Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Using large-scale population-based data to improve disease risk assessment of clinical variants

Abstract

Understanding the disease risk of genetic variants is fundamental to precision medicine. Estimates of penetrance—the probability of disease for individuals with a variant allele—rely on disease-specific cohorts, clinical testing and emerging electronic health record (EHR)-linked biobanks. These data sources, while valuable, each have limitations in quality, representativeness and analyzability. Here, we provide a historical account of the currently accepted pathogenicity classification system and data available in ClinVar, a public archive that aggregates variant interpretations but lacks detailed data for accurate penetrance assessment, highlighting its oversimplification of disease risk. We propose an integrative Bayesian framework that unifies pathogenicity and penetrance, leveraging both functional and real-world evidence to refine risk predictions. In addition, we advocate for enhancing ClinVar with the inclusion of high-priority phenotypes, age-stratified data and population-based cohorts linked to EHRs. We suggest developing a community repository of population-based penetrance estimates to support the clinical application of genetic data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of a variant interpretation framework from pathogenicity to population-based disease risk using a real-world example of BRCA2 c.68-7T>A.

Similar content being viewed by others

References

  1. Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 583, 96–102 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Smedley, D. et al. 100,000 Genomes pilot on rare-disease diagnosis in health care—preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article  PubMed  CAS  Google Scholar 

  3. Nisar, H. et al. Whole-genome sequencing as a first-tier diagnostic framework for rare genetic diseases. Exp. Biol. Med. (Maywood) 246, 2610–2617 (2021).

    Article  PubMed  CAS  Google Scholar 

  4. Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention. Tier 1 genomics applications and their importance to public health. CDC https://archive.cdc.gov/www_cdc_gov/genomics/implementation/toolkit/tier1.htm (2014).

  5. Sturm, A. C. et al. Clinical genetic testing for familial hypercholesterolemia: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 72, 662–680 (2018).

    Article  PubMed  Google Scholar 

  6. Lee, C. H. et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J. Am. Coll. Radiol. 7, 18–27 (2010).

    Article  PubMed  Google Scholar 

  7. Nelson, H. D. et al. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S. Preventive Services Task Force recommendation. Ann. Intern. Med. 160, 255–266 (2014).

    Article  PubMed  Google Scholar 

  8. Schmidt, R. J. et al. Recommendations for risk allele evidence curation, classification, and reporting from the ClinGen Low Penetrance/Risk Allele Working Group. Genet. Med. 26, 101036 (2024).

    Article  PubMed  CAS  Google Scholar 

  9. Kuchenbaecker, K. B. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317, 2402–2416 (2017).

    Article  PubMed  CAS  Google Scholar 

  10. Beutler, E., Felitti, V. J., Koziol, J. A., Ho, N. J. & Gelbart, T. Penetrance of 845G→A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 359, 211–218 (2002).

    Article  PubMed  Google Scholar 

  11. Van Driest, S. L. et al. Association of arrhythmia-related genetic variants with phenotypes documented in electronic medical records. JAMA 315, 47–57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Forrest, I. S. et al. Population-based penetrance of deleterious clinical variants. JAMA 327, 350–359 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miller, D. T. et al. ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 24, 1407–1414 (2022).

    Article  PubMed  CAS  Google Scholar 

  15. Amendola, L. M. et al. Performance of ACMG–AMP variant-interpretation guidelines among nine laboratories in the Clinical Sequencing Exploratory Research Consortium. Am. J. Hum. Genet. 98, 1067–1076 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shah, N. et al. Identification of misclassified ClinVar variants via disease population prevalence. Am. J. Hum. Genet. 102, 609–619 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. Wu, N. et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N. Engl. J. Med. 372, 341–350 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gulati, A. et al. Hypomorphic PKD1 alleles impact disease variability in autosomal dominant polycystic kidney disease. Kidney360 4, 387–392 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zernant, J. et al. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes. Cold Spring Harb. Mol. Case Stud. 4, a002733 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zschocke, J., Byers, P. H. & Wilkie, A. O. M. Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat. Rev. Genet. 24, 442–463 (2023).

    Article  PubMed  CAS  Google Scholar 

  22. Sharo, A. G., Zou, Y., Adhikari, A. N. & Brenner, S. E. ClinVar and HGMD genomic variant classification accuracy has improved over time, as measured by implied disease burden. Genome Med. 15, 51 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alirezaie, N., Kernohan, K. D., Hartley, T., Majewski, J. & Hocking, T. D. ClinPred: prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants. Am. J. Hum. Genet. 103, 474–483 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Li, S. et al. CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations. Genome Med. 12, 75 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Agaoglu, N. B. et al. Consistency of variant interpretations among bioinformaticians and clinical geneticists in hereditary cancer panels. Eur. J. Hum. Genet. 30, 378–383 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Giles, H. H. et al. The science and art of clinical genetic variant classification and its impact on test accuracy. Annu. Rev. Genomics Hum. Genet. 22, 285–307 (2021).

    Article  PubMed  Google Scholar 

  27. Yang, S. et al. Sources of discordance among germ-line variant classifications in ClinVar. Genet. Med. 19, 1118–1126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rehm, H. L. et al. ClinGen—the Clinical Genome Resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Xiang, J. et al. Reinterpretation of common pathogenic variants in ClinVar revealed a high proportion of downgrades. Sci. Rep. 10, 331 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Walsh, N., Cooper, A., Dockery, A. & O’Byrne, J. J. Variant reclassification and clinical implications. J. Med. Genet. 61, 207–211 (2024).

    Article  PubMed  CAS  Google Scholar 

  31. Venner, E. et al. The frequency of pathogenic variation in the All of Us cohort reveals ancestry-driven disparities. Commun. Biol. 7, 174 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chirita-Emandi, A. et al. Challenges in reporting pathogenic/potentially pathogenic variants in 94 cancer predisposing genes—in pediatric patients screened with NGS panels. Sci. Rep. 10, 223 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ye, J. Z., Delmar, M., Lundby, A. & Olesen, M. S. Reevaluation of genetic variants previously associated with arrhythmogenic right ventricular cardiomyopathy integrating population-based cohorts and proteomics data. Clin. Genet. 96, 506–514 (2019).

    Article  PubMed  CAS  Google Scholar 

  34. van Rooij, J. et al. Reduced penetrance of pathogenic ACMG variants in a deeply phenotyped cohort study and evaluation of ClinVar classification over time. Genet. Med. 22, 1812–1820 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Milko, L. V. et al. Development of Clinical Domain Working Groups for the Clinical Genome Resource (ClinGen): lessons learned and plans for the future. Genet. Med. 21, 987–993 (2019).

    Article  PubMed  Google Scholar 

  36. Landrum, M. J. & Kattman, B. L. ClinVar at five years: delivering on the promise. Hum. Mutat. 39, 1623–1630 (2018).

    Article  PubMed  Google Scholar 

  37. Landrum, M. J. et al. ClinVar: updates to support classifications of both germline and somatic variants. Nucleic Acids Res. 53, D1313–D1321 (2025).

    Article  PubMed  Google Scholar 

  38. Pottinger, T. D. et al. Pathogenic and uncertain genetic variants have clinical cardiac correlates in diverse biobank participants. J. Am. Heart Assoc. 9, e013808 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shah, R. A. et al. Frequency, penetrance, and variable expressivity of dilated cardiomyopathy-associated putative pathogenic gene variants in UK Biobank participants. Circulation 146, 110–124 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bourfiss, M. et al. Prevalence and disease expression of pathogenic and likely pathogenic variants associated with inherited cardiomyopathies in the general population. Circ. Genom. Precis. Med. 15, e003704 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Manrai, A. K. et al. Genetic misdiagnoses and the potential for health disparities. N. Engl. J. Med. 375, 655–665 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Blair, D. R. & Risch, N. Dissecting the reduced penetrance of putative loss-of-function variants in population-scale biobanks. Preprint at medRxiv https://doi.org/10.1101/2024.09.23.24314008 (2024).

  43. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gordon, A. S. et al. Consideration of disease penetrance in the selection of secondary findings gene–disease pairs: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 26, 101142 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shekari, S. et al. Penetrance of pathogenic genetic variants associated with premature ovarian insufficiency. Nat. Med. 29, 1692–1699 (2023).

    Article  PubMed  CAS  Google Scholar 

  46. Huerta-Chagoya, A. et al. Rare variant analyses in 51,256 type 2 diabetes cases and 370,487 controls reveal the pathogenicity spectrum of monogenic diabetes genes. Nat. Genet. 56, 2370–2379 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Heyne, H. O. et al. Mono- and biallelic variant effects on disease at biobank scale. Nature 613, 519–525 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yao, Q., Gorevic, P., Shen, B. & Gibson, G. Genetically transitional disease: a new concept in genomic medicine. Trends Genet. 39, 98–108 (2023).

    Article  PubMed  CAS  Google Scholar 

  49. Barton, A. R., Hujoel, M. L. A., Mukamel, R. E., Sherman, M. A. & Loh, P.-R. A spectrum of recessiveness among Mendelian disease variants in UK Biobank. Am. J. Hum. Genet. 109, 1298–1307 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bychkovsky, B. L. et al. Prevalence and spectrum of pathogenic variants among patients with multiple primary cancers evaluated by clinical characteristics. Cancer 128, 1275–1283 (2022).

    Article  PubMed  CAS  Google Scholar 

  51. Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun. 11, 3635 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wright, C. F. et al. Guidance for estimating penetrance of monogenic disease-causing variants in population cohorts. Nat. Genet. 56, 1772–1779 (2024).

    Article  PubMed  CAS  Google Scholar 

  53. Zschocke, J., Byers, P. H. & Wilkie, A. O. M. Gregor Mendel and the concepts of dominance and recessiveness. Nat. Rev. Genet. 23, 387–388 (2022).

    Article  PubMed  CAS  Google Scholar 

  54. Tavtigian, S. V. et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. 20, 1054–1060 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Plon, S. E. et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 29, 1282–1291 (2008).

    Article  PubMed  CAS  Google Scholar 

  56. Kroncke, B. M. et al. A Bayesian method to estimate variant-induced disease penetrance. PLoS Genet. 16, e1008862 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Qian, D. et al. A Bayesian framework for efficient and accurate variant prediction. PLoS ONE 13, e0203553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ruklisa, D., Ware, J. S., Walsh, R., Balding, D. J. & Cook, S. A. Bayesian models for syndrome- and gene-specific probabilities of novel variant pathogenicity. Genome Med. 7, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. McGurk, K. A. et al. The penetrance of rare variants in cardiomyopathy-associated genes: a cross-sectional approach to estimating penetrance for secondary findings. Am. J. Hum. Genet. 110, 1482–1495 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. O’Neill, M. J. et al. Continuous Bayesian variant interpretation accounts for incomplete penetrance among Mendelian cardiac channelopathies. Genet. Med. 25, 100355 (2023).

    Article  PubMed  Google Scholar 

  61. O’Neill, M. J. et al. Multiplexed assays of variant effect and automated patch clamping improve KCNH2-LQTS variant classification and cardiac event risk stratification. Circulation 150, 1869–1881 (2024).

    Article  PubMed  Google Scholar 

  62. Ruberu, T. L. M., Braun, D., Parmigiani, G. & Biswas, S. Bayesian meta-analysis of penetrance for cancer risk. Biometrics 80, ujae038 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Benn, D. E. et al. Bayesian approach to determining penetrance of pathogenic SDH variants. J. Med. Genet. 55, 729–734 (2018).

    Article  PubMed  CAS  Google Scholar 

  64. Buhr, L. & Schicktanz, S. Individual benefits and collective challenges: experts’ views on data-driven approaches in medical research and healthcare in the German context. Big Data Soc. https://doi.org/10.1177/20539517221092653 (2022).

    Article  Google Scholar 

  65. Longo, D. L. & Drazen, J. M. Data sharing. N. Engl. J. Med. 374, 276–277 (2016).

    Article  PubMed  Google Scholar 

  66. Torkamani, A., Andersen, K. G., Steinhubl, S. R. & Topol, E. J. High-definition medicine. Cell 170, 828–843 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Foreman, J. et al. DECIPHER: improving genetic diagnosis through dynamic integration of genomic and clinical data. Annu. Rev. Genomics Hum. Genet. 24, 151–176 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Harrison, J. E., Weber, S., Jakob, R. & Chute, C. G. ICD-11: an international classification of diseases for the twenty-first century. BMC Med. Inform. Decis. Mak. 21, 206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gargano, M. A. et al. The Human Phenotype Ontology in 2024: phenotypes around the world. Nucleic Acids Res. 52, D1333–D1346 (2024).

    Article  PubMed  CAS  Google Scholar 

  71. Mighton, C. et al. From the patient to the population: use of genomics for population screening. Front. Genet. 13, 893832 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Foss, K. S. et al. The rise of population genomic screening: characteristics of current programs and the need for evidence regarding optimal implementation. J. Pers. Med. 12, 692 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Murray, M. F., Evans, J. P. & Khoury, M. J. DNA-based population screening: potential suitability and important knowledge gaps. JAMA 323, 307–308 (2020).

    Article  PubMed  Google Scholar 

  74. Rowley, S. M. et al. Population-based genetic testing of asymptomatic women for breast and ovarian cancer susceptibility. Genet. Med. 21, 913–922 (2019).

    Article  PubMed  CAS  Google Scholar 

  75. Khoury, M. J. et al. A collaborative translational research framework for evaluating and implementing the appropriate use of human genome sequencing to improve health. PLoS Med. 15, e1002631 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. O’Brien, T. D. et al. Population screening shows risk of inherited cancer and familial hypercholesterolemia in Oregon. Am. J. Hum. Genet. 110, 1249–1265 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dikilitas, O. et al. Familial hypercholesterolemia in the electronic medical records and genomics network: prevalence, penetrance, cardiovascular risk, and outcomes after return of results. Circ. Genom. Precis. Med. 16, e003816 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Denny, J. C. et al. The ‘All of Us’ research program. N. Engl. J. Med. 381, 668–676 (2019).

    Article  PubMed  Google Scholar 

  79. Lacaze, P., Manchanda, R. & Green, R. C. Prioritizing the detection of rare pathogenic variants in population screening. Nat. Rev. Genet. 24, 205–206 (2023).

    Article  PubMed  CAS  Google Scholar 

  80. Lacaze, P. A. et al. Population DNA screening for medically actionable disease risk in adults. Med. J. Aust. 216, 278–280 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grzymski, J. J. et al. Population genetic screening efficiently identifies carriers of autosomal dominant diseases. Nat. Med. 26, 1235–1239 (2020).

    Article  PubMed  CAS  Google Scholar 

  82. Dias, R. & Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 11, 70 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Aradhya, S. et al. Applications of artificial intelligence in clinical laboratory genomics. Am. J. Med. Genet. C Semin. Med. Genet. 193, e32057 (2023).

    Article  PubMed  CAS  Google Scholar 

  84. Amann, R. I. et al. Toward unrestricted use of public genomic data. Science 363, 350–352 (2019).

    Article  PubMed  CAS  Google Scholar 

  85. Castellani, C. et al. CFTR2: how will it help care? Paediatr. Respir. Rev. 14, 2–5 (2013).

    Article  PubMed  Google Scholar 

  86. Sollis, E. et al. The NHGRI–EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article  PubMed  CAS  Google Scholar 

  87. Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Abul-Husn, N. S. & Kenny, E. E. Personalized medicine and the power of electronic health records. Cell 177, 58–69 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Parsons, M. T. et al. Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: an ENIGMA resource to support clinical variant classification. Hum. Mutat. 40, 1557–1578 (2019).

    Article  PubMed  CAS  Google Scholar 

  90. Mighton, C. et al. Variant classification changes over time in BRCA1 and BRCA2. Genet. Med. 21, 2248–2254 (2019).

    Article  PubMed  Google Scholar 

  91. de Andrade, K. C. et al. Variable population prevalence estimates of germline TP53 variants: a gnomAD-based analysis. Hum. Mutat. 40, 97–105 (2019).

    Article  PubMed  Google Scholar 

  92. Davidson, A. L. et al. Analysis of hereditary cancer gene variant classifications from ClinVar indicates a need for regular reassessment of clinical assertions. Hum. Mutat. 43, 2054–2062 (2022).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Plon for helpful comments on the manuscript. R.D. is supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) (R35-GM124836). W.K.C. is supported by the National Human Genome Research Institute of the NIH (R01-HG010365). K.-L.H. is supported by the National Institute of General Medical Sciences of the NIH (R35-GM138113).

Author information

Authors and Affiliations

Authors

Contributions

I.S.F., D.M.J. and R.D. wrote the first draft of the manuscript with substantial comments and revisions from K.-L.H., J.M.E. and W.K.C. All authors contributed to drafting the manuscript.

Corresponding authors

Correspondence to Daniel M. Jordan or Ron Do.

Ethics declarations

Competing interests

R.D. reported being a scientific cofounder, consultant and equity holder for Pensieve Health (pending) and a consultant for Variant Bio and Character Bio. J.M.E. reported being a cofounder, board member and executive of the nonprofit Center for Genomic Interpretation, with part of its mission overlapping with the interests of this work, specifically the mission to encourage careful stewardship of clinical genetics. J.M.E. is also the founder of and a consultant for Grandview Consulting LLC, not related to this work. K.-L.H. is a founder of Open Box Science, not related to this work. W.K.C. is on the Board of Directors of Prime Medicine and Rallybio, not related to this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Brett Kroncke and Johannes Zschocke for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrest, I.S., Huang, KL., Eggington, J.M. et al. Using large-scale population-based data to improve disease risk assessment of clinical variants. Nat Genet 57, 1588–1597 (2025). https://doi.org/10.1038/s41588-025-02212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-025-02212-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing