Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sharing approaches in predictive genomics across animals, plants and humans

Abstract

Genomic prediction has become central to human, animal and plant biology, enabling quantitative inference of how genetic variation shapes complex traits. Although these domains share statistical foundations, such as linear mixed models, Bayesian regression and deep-learning frameworks, they have advanced largely in parallel. Here we synthesize their methodological evolution and highlight opportunities for integration and deeper collaborations. Agricultural genetics contributed to the mixed-model and Bayesian frameworks underlying modern polygenic scores, while human genomics has driven advances in nonlinear modeling, federated learning and biology-informed artificial intelligence. We propose a roadmap centered on interoperable data standards, shared benchmarks and cross-disciplinary training to unify predictive genomics across species. Together, these efforts establish genomic prediction as a comparative science capable of explaining how genetic information drives form and function across the diversity of life. We emphasize that shared biological architectures and knowledge transfer across species can directly improve the robustness, interpretability and generalizability of predictive models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparative data structures and integration opportunities across human, animal and plant predictive genomics.
Fig. 2: Evolution and cross-domain transfer of computational methods for genomic prediction.

References

  1. Crouch, D. J. M. & Bodmer, W. F. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc. Natl Acad. Sci. USA 117, 18924–18933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sahito, J. H. et al. Advancements and prospects of genome-wide association studies (GWAS) in maize. Int. J. Mol. Sci. 25, 1918 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meuwissen, T., Hayes, B. & Goddard, M. Genomic selection: a paradigm shift in animal breeding. Anim. Front. 6, 6–14 (2016).

    Article  Google Scholar 

  4. Huber, C. D., Kim, B. Y. & Lohmueller, K. E. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. PLoS Genet. 16, e1008827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaler, A. S., Purcell, L. C., Beissinger, T. & Gillman, J. D. Genomic prediction models for traits differing in heritability for soybean, rice, and maize. BMC Plant Biol. 22, 87 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barreto, C. A. V. et al. Genomic prediction in multi-environment trials in maize using statistical and machine learning methods. Sci. Rep. 14, 1062 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elgart, M. et al. Non-linear machine learning models incorporating SNPs and PRS improve polygenic prediction in diverse human populations. Commun. Biol. 5, 856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, S. H., Clark, S. & van der Werf, J. H. J. Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PLoS ONE 12, e0189775 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee, S. H., Weerasinghe, W. M. S. P., Wray, N. R., Goddard, M. E. & van der Werf, J. H. J. Using information of relatives in genomic prediction to apply effective stratified medicine. Sci. Rep. 7, 42091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Callister, A. N. et al. Accounting for population structure in genomic predictions of Eucalyptus globulus. G3 (Bethesda) 12, jkac180 (2022).

    Article  PubMed  Google Scholar 

  14. Nishio, M. et al. Comparing pedigree and genomic inbreeding coefficients, and inbreeding depression of reproductive traits in Japanese Black cattle. BMC Genomics 24, 376 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnsson, M. Genomics in animal breeding from the perspectives of matrices and molecules. Hereditas 160, 20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, J. et al. Genomics and phenomics of body mass index reveals a complex disease network. Nat. Commun. 13, 7973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harris, K. M. et al. Cohort profile: the national longitudinal study of adolescent to adult health (add health). Int. J. Epidemiol. 48, 1415–1415k (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dashti, H. S. et al. Sleep health, diseases, and pain syndromes: findings from an electronic health record biobank. Sleep 44, zsaa189 (2021).

    Article  PubMed  Google Scholar 

  19. David, I., Ricard, A., Huynh-Tran, V.-H., Dekkers, J. C. M. & Gilbert, H. Quality of breeding value predictions from longitudinal analyses, with application to residual feed intake in pigs. Genet. Sel. Evol. 54, 32 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rojas de Oliveira, H. et al. Phenotypic and genomic modeling of lactation curves: a longitudinal perspective. JDS Commun. 5, 241–246 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gutierrez-Reinoso, M. A., Aponte, P. M. & Garcia-Herreros, M. Genomic analysis, progress and future perspectives in dairy cattle selection: a review. Animals (Basel) 11, 599 (2021).

    Article  PubMed  Google Scholar 

  22. Cole, J. B., Makanjuola, B. O., Rochus, C. M., van Staaveren, N. & Baes, C. The effects of breeding and selection on lactation in dairy cattle. Anim. Front. 13, 55–63 (2023).

    Article  PubMed  Google Scholar 

  23. Brito, L. F. et al. Large-scale phenotyping of livestock welfare in commercial production systems: a new frontier in animal breeding. Front. Genet. 11, 793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tuggle, C. K. et al. Current challenges and future of agricultural genomes to phenomes in the USA. Genome Biol. 25, 8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kipkoech, S. et al. Conservation priorities and distribution patterns of vascular plant species along environmental gradients in Aberdare ranges forest. PhytoKeys 131, 91–113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu, Y., Li, D. & Vermund, S. H. Advantages and limitations of the body mass index (BMI) to assess adult obesity. Int. J. Environ. Res. Public Health 21, 757 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gregorius, H.-R. Distribution of variation over populations. Theory Biosci. 128, 179–189 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Genetic Alliance & The New England Public Health Genetics Education Collaborative. Understanding Genetics: A New England Guide for Patients and Health Professionals (Genetic Alliance, 2010).

  29. Wijsman, E. M. The role of large pedigrees in an era of high-throughput sequencing. Hum. Genet. 131, 1555–1563 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fradgley, N. et al. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. PLoS Biol. 17, e3000071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Koganebuchi, K. & Kimura, R. Biomedical and genetic characteristics of the Ryukyuans: demographic history, diseases and physical and physiological traits. Ann. Hum. Biol. 46, 354–366 (2019).

    Article  PubMed  Google Scholar 

  32. Delval, I., Fernández-Bolaños, M. & Izar, P. Towards an integrated concept of personality in human and nonhuman animals. Integr. Psychol. Behav. Sci. 58, 271–302 (2024).

    Article  PubMed  Google Scholar 

  33. York, R. A. Assessing the genetic landscape of animal behavior. Genetics 209, 223–232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liscum, E. et al. Phototropism: growing towards an understanding of plant movement. Plant Cell 26, 38–55 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Djanaguiraman, M., Narayanan, S., Erdayani, E. & Prasad, P. V. V. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 20, 268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Janicka, K., Drabik, K., Wengerska, K. & Rozempolska-Rucińska, I. Effect of stocking density on behavioural and physiological traits of laying hens. Animals (Basel) 15, 604 (2025).

    Article  PubMed  Google Scholar 

  37. Venkatesh, S. S. et al. Genome-wide analyses identify 25 infertility loci and relationships with reproductive traits across the allele frequency spectrum. Nat. Genet. 57, 1107–1118 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bizouerne, E. et al. Genetic variability in seed longevity and germination traits in a tomato MAGIC population in contrasting environments. Plants (Basel) 12, 3632 (2023).

    CAS  PubMed  Google Scholar 

  39. Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nat. Rev. Genet. 4, 587–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Andrade, A. C. B., Viana, J. M. S., Pereira, H. D., Pinto, V. B. & Fonseca E Silva, F. Linkage disequilibrium and haplotype block patterns in popcorn populations. PLoS ONE 14, e0219417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, W. et al. Factors affecting the accuracy of genomic prediction in joint pig populations. Animal 17, 100980 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Pritchard, J. K. & Przeworski, M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69, 1–14 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Slatkin, M. Linkage disequilibrium–understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. & Lander, E. S. High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Teissier, M. et al. Genomic predictions based on haplotypes fitted as pseudo-SNP for milk production and udder type traits and SCS in French dairy goats. J. Dairy Sci. 103, 11559–11573 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Feitosa, F. L. B. et al. Comparison between haplotype-based and individual SNP-based genomic predictions for beef fatty acid profile in Nelore cattle. J. Anim. Breed. Genet. 137, 468–476 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Y. et al. Structural variation reshapes population gene expression and trait variation in 2,105 Brassica napus accessions. Nat. Genet. 56, 2538–2550 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ladeira, G. C., Pinedo, P. J., Santos, J. E. P., Thatcher, W. W. & Rezende, F. M. Detecting and characterizing copy number variation in a large commercial U.S. Holstein cattle population. BMC Genomics 26, 381 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Oliveira, L. F. et al. Genome-wide detection of copy number variation and association studies with physiological and anatomical indicators of heat stress response in lactating sows. J. Anim. Breed. Genet. 143, 183–192 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abbas, Q., Wilhelm, M., Kuster, B., Poppenberger, B. & Frishman, D. Exploring crop genomes: assembly features, gene prediction accuracy, and implications for proteomics studies. BMC Genomics 25, 619 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rice, A. & Mayrose, I. The Chromosome Counts Database (CCDB). Methods Mol. Biol. 2703, 123–129 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. De Los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D. & Calus, M. P. L. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193, 327–345 (2013).

    Article  Google Scholar 

  53. Zhao, Z., Fritsche, L. G., Smith, J. A., Mukherjee, B. & Lee, S. The construction of cross-population polygenic risk scores using transfer learning. Am. J. Hum. Genet. 109, 1998–2008 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Habier, D., Fernando, R. L. & Garrick, D. J. Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 194, 597–607 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clark, S. A. & van der Werf, J. Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values. Methods Mol. Biol. 1019, 321–330 (2013).

    Article  PubMed  Google Scholar 

  57. Lourenco, D. et al. Single-step genomic evaluations from theory to practice: using SNP chips and sequence data in BLUPF90. Genes (Basel) 11, 790 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Henderson, C. R., Kempthorne, O., Searle, S. R. & von Krosigk, C. M. The estimation of environmental and genetic trends from records subject to culling. Biometrics 15, 192 (1959).

    Article  Google Scholar 

  59. Gianola, D., de los Campos, G., Hill, W. G., Manfredi, E. & Fernando, R. Additive genetic variability and the Bayesian alphabet. Genetics 183, 347–363 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Habier, D., Fernando, R. L., Kizilkaya, K. & Garrick, D. J. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12, 186 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gianola, D. Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194, 573–596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wolc, A. & Dekkers, J. C. M. Application of Bayesian genomic prediction methods to genome-wide association analyses. Genet. Sel. Evol. 54, 31 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Truong, B. et al. Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives. Nat. Commun. 11, 3074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, C.-Y., Han, J., Hunter, D. J., Kraft, P. & Price, A. L. Explicit modeling of ancestry improves polygenic risk scores and BLUP prediction. Genet. Epidemiol. 39, 427–438 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhao, Y. X. et al. Genome-wide association studies uncover genes associated with litter traits in the pig. Animal 16, 100672 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Muneeb, M., Feng, S. & Henschel, A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics 23, 511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arashi, M., Roozbeh, M., Hamzah, N. A. & Gasparini, M. Ridge regression and its applications in genetic studies. PLoS ONE 16, e0245376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kwak, S. G. LASSO regression analysis: applications in dyslipidemia and cardiovascular disease research. J. Lipid Atheroscler. 14, 289–297 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Z. et al. Discriminative elastic-net regularized linear regression. IEEE Trans. Image Process. 26, 1466–1481 (2017).

    Article  PubMed  Google Scholar 

  71. Jung, K.-W. et al. Prediction of cancer incidence and mortality in Korea, 2021. Cancer Res. Treat. 53, 316–322 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Merrick, L. F., Lozada, D. N., Chen, X. & Carter, A. H. Classification and regression models for genomic selection of skewed phenotypes: a case for disease resistance in winter wheat (Triticum aestivum L.). Front. Genet. 13, 835781 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tamibmaniam, J., Hussin, N., Cheah, W. K., Ng, K. S. & Muninathan, P. Proposal of a clinical decision tree algorithm using factors associated with severe dengue infection. PLoS ONE 11, e0161696 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jamthikar, A. et al. Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovasc. Diagn. Ther. 10, 919–938 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, X. et al. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs. J. Anim. Sci. Biotechnol. 13, 60 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bellot, P., de Los Campos, G. & Pérez-Enciso, M. Can deep learning improve genomic prediction of complex human traits?. Genetics 210, 809–819 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ye, S., Li, J. & Zhang, Z. Multi-omics-data-assisted genomic feature markers preselection improves the accuracy of genomic prediction. J. Anim. Sci. Biotechnol. 11, 109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ehret, A., Hochstuhl, D., Gianola, D. & Thaller, G. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Genet. Sel. Evol. 47, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ballard, J. L., Wang, Z., Li, W., Shen, L. & Long, Q. Deep learning-based approaches for multi-omics data integration and analysis. BioData Min. 17, 38 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pedrosa, V. B. et al. Machine learning methods for genomic prediction of cow behavioral traits measured by automatic milking systems in North American Holstein cattle. J. Dairy Sci. 107, 4758–4771 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Tabatabaei, S. F., Akbari Roknabadi, S. & Koohi, S. DeepEPI: CNN-transformer-based model for extracting TF interactions through predicting enhancer-promoter interactions. Bioinform. Adv. 5, vbaf221 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Monti, M., Fiorentino, J., Milanetti, E., Gosti, G. & Tartaglia, G. G. Prediction of time series gene expression and structural analysis of gene regulatory networks using recurrent neural networks. Entropy (Basel) 24, 141 (2022).

    Article  PubMed  Google Scholar 

  83. Wang, K. et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Mol. Plant 16, 279–293 (2023).

    Article  PubMed  Google Scholar 

  84. Zou, J. et al. A primer on deep learning in genomics. Nat. Genet. 51, 12–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, Y. & Xie, L. AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships. Comput. Struct. Biotechnol. J. 27, 265–277 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, X., Roberts, R., Liu, Z. & Tong, W. A generative adversarial network model alternative to animal studies for clinical pathology assessment. Nat. Commun. 14, 7141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Riley, R., Mathieson, I. & Mathieson, S. Interpreting generative adversarial networks to infer natural selection from genetic data. Genetics 226, iyae024 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Avsec, Ž. et al. AlphaGenome: advancing regulatory variant effect prediction with a unified DNA sequence model. Preprint at bioRxiv https://doi.org/10.1101/2025.06.25.661532 (2025).

  89. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu, Y., Fleming, S., Tegtmeyer, M., McCarroll, S. A. & Babadi, M. Explainable modeling of single-cell perturbation data using attention and sparse dictionary learning. Cell Syst. 16, 101245 (2025).

    Article  CAS  PubMed  Google Scholar 

  92. Van Dijk, A. D. J., Kootstra, G., Kruijer, W. & de Ridder, D. Machine learning in plant science and plant breeding. iScience 24, 101890 (2021).

    Article  PubMed  Google Scholar 

  93. Vivek, S., Faul, J., Thyagarajan, B. & Guan, W. Explainable variational autoencoder (E-VAE) model using genome-wide SNPs to predict dementia. J. Biomed. Inform. 148, 104536 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Patel, A. P. et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease. Nat. Med. 29, 1793–1803 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, X. et al. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. Gigascience 8, giz120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ahanger, M. A. et al. Plant responses to environmental stresses-from gene to biotechnology. AoB Plants 9, plx025 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zamorano-Algandar, R. et al. Genetic markers associated with milk production and thermotolerance in Holstein dairy cows managed in a heat-stressed environment. Biology (Basel) 12, 679 (2023).

    CAS  PubMed  Google Scholar 

  98. Silva Neto, J. B. et al. Genotype-by-environment interactions in beef and dairy cattle populations: a review of methodologies and perspectives on research and applications. Anim. Genet. 55, 871–892 (2024).

    Article  CAS  PubMed  Google Scholar 

  99. Carey, C. E. et al. Principled distillation of UK Biobank phenotype data reveals underlying structure in human variation. Nat. Hum. Behav. 8, 1599–1615 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Assary, E., Vincent, J. P., Keers, R. & Pluess, M. Gene–environment interaction and psychiatric disorders: review and future directions. Semin. Cell Dev. Biol. 77, 133–143 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Hartiala, J. A., Hilser, J. R., Biswas, S., Lusis, A. J. & Allayee, H. Gene–environment interactions for cardiovascular disease. Curr. Atheroscler. Rep. 23, 75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nguyen, H., Shrestha, S., Draghici, S. & Nguyen, T. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics 35, 2843–2846 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, Y. et al. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct. Target. Ther. 9, 340 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Abdulraheem, M. I. Mechanisms of plant epigenetic regulation in response to plant stress: recent discoveries and implications. Plants (Basel) 13, 163 (2024).

    CAS  PubMed  Google Scholar 

  105. Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Tobi, E. W. et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18, 4046–4053 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Araujo, A. C. et al. Transgenerational epigenetic heritability for growth, body composition, and reproductive traits in Landrace pigs. Front. Genet. 15, 1526473 (2024).

    Article  PubMed  Google Scholar 

  108. Kuchta, K. et al. Predicting proteome dynamics using gene expression data. Sci. Rep. 8, 13866 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hornisch, M. & Piazza, I. Regulation of gene expression through protein-metabolite interactions. NPJ Metab. Health Dis. 3, 7 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Van Hilten, A. et al. Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-omics data. NPJ Syst. Biol. Appl. 10, 81 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lopez-Cruz, M. et al. Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America. Nat. Commun. 14, 6904 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Giuffra, E. & Tuggle, C. K. Functional Annotation of Animal Genomes (FAANG): current achievements and roadmap. Annu. Rev. Anim. Biosci. 7, 65–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Stolovitzky, G., Monroe, D. & Califano, A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann. NY Acad. Sci. 1115, 1–22 (2007).

    Article  PubMed  Google Scholar 

  114. Zheng, Z. et al. Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries. Nat. Genet. 56, 767–777 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mendoza-Revilla, J. et al. A foundational large language model for edible plant genomes. Commun. Biol. 7, 835 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhai, J. et al. Cross-species modeling of plant genomes at single-nucleotide resolution using a pretrained DNA language model. Proc. Natl Acad. Sci. USA 122, e2421738122 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wu, C. et al. A transformer-based genomic prediction method fused with knowledge-guided module. Brief. Bioinform. 25, bbad438 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Murphy, K. M., Ludwig, E., Gutierrez, J. & Gehan, M. A. Deep learning in image-based plant phenotyping. Annu. Rev. Plant Biol. 75, 771–795 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Guan, H. et al. A lightweight model for efficient identification of plant diseases and pests based on deep learning. Front. Plant Sci. 14, 1227011 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2021).

    Article  PubMed  Google Scholar 

  121. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  122. Gudmundsson, S. et al. Variant interpretation using population databases: lessons from gnomAD. Hum. Mutat. 43, 1012–1030 (2022).

    Article  PubMed  Google Scholar 

  123. Shrestha, R. et al. Multifunctional crop trait ontology for breeders’ data: field book, annotation, data discovery and semantic enrichment of the literature. AoB Plants 2010, plq008 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Harrison, P. W. et al. The FAANG data portal: global, open-access, ‘FAIR’, and richly validated genotype to phenotype data for high-quality Functional Annotation of Animal Genomes. Front. Genet. 12, 639238 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Harrow, J. et al. ELIXIR: providing a sustainable infrastructure for life science data at European scale. Bioinformatics 37, 2506–2511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sarma, K. V. et al. Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inform. Assoc. 28, 1259–1264 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dalla-Torre, H. et al. Nucleotide transformer: building and evaluating robust foundation models for human genomics. Nat. Methods 22, 287–297 (2025).

    Article  CAS  PubMed  Google Scholar 

  128. Cui, H. et al. Towards multimodal foundation models in molecular cell biology. Nature 640, 623–633 (2025).

    Article  CAS  PubMed  Google Scholar 

  129. Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Teng, J. et al. A compendium of genetic regulatory effects across pig tissues. Nat. Genet. 56, 112–123 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, J. et al. Correction: incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet. 17, e1009825 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Elakhdar, A., El-Naggar, A. A., El-Wakeell, S. & Ahmed, A. H. Integrating univariate and multivariate stability indices for breeding clime-resilient barley cultivars. BMC Plant Biol. 25, 76 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yue, H. et al. Assessing the role of genotype by environment interaction as determinants of maize grain yield and lodging resistance. BMC Plant Biol. 25, 120 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Streit, M. et al. Using genome-wide association analysis to characterize environmental sensitivity of milk traits in dairy cattle. G3 (Bethesda) 3, 1085–1093 (2013).

    Article  PubMed  Google Scholar 

  136. Park, S. et al. Interactions between polygenic risk scores, dietary pattern, and menarche age with the obesity risk in a large hospital-based cohort. Nutrients 13, 3772 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Guo, T. et al. Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. Genome Res. 30, 673–683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mehrban, H., Naserkheil, M., Lee, D. & Ibáñez-Escriche, N. Multi-trait single-step GBLUP improves accuracy of genomic prediction for carcass traits using yearling weight and ultrasound traits in Hanwoo. Front. Genet. 12, 692356 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Duan, J., Zhang, J., Liu, L. & Wen, Y. A guidance of model selection for genomic prediction based on linear mixed models for complex traits. Front. Genet. 13, 1017380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dang, X. et al. AMMI and GGE biplot analysis for genotype x environment interactions affecting the yield and quality characteristics of sugar beet. PeerJ 12, e16882 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Da Silva Júnior, A. C. et al. Multi-trait and multi-environment Bayesian analysis to predict the G x E interaction in flood-irrigated rice. PLoS ONE 17, e0259607 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Smart, J. J. & Grammer, G. L. Modernising fish and shark growth curves with Bayesian length-at-age models. PLoS ONE 16, e0246734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Loch, A. A. et al. Use of a Bayesian Network Model to predict psychiatric illness in individuals with ‘at risk mental states’ from a general population cohort. Neurosci. Lett. 770, 136358 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Jighly, A. et al. Using genomic prediction with crop growth models enables the prediction of associated traits in wheat. J. Exp. Bot. 74, 1389–1402 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Cuevas, J. et al. Genomic prediction of genotype x environment interaction kernel regression models. Plant Genome 9, plantgenome2016.03.0024 (2016).

  146. Maltecca, C. et al. Predicting growth and carcass traits in swine using microbiome data and machine learning algorithms. Sci. Rep. 9, 6574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Huangfu, Y., Palloni, A., Beltrán-Sánchez, H. & McEniry, M. C. Gene–environment interactions and the case of body mass index and obesity: how much do they matter? PNAS Nexus 2, pgad213 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wang, H. et al. Cropformer: an interpretable deep learning framework for crop genomic prediction. Plant Commun. 6, 101223 (2025).

    Article  PubMed  Google Scholar 

  149. Lee, H.-J., Lee, J. H., Gondro, C., Koh, Y. J. & Lee, S. H. deepGBLUP: joint deep learning networks and GBLUP framework for accurate genomic prediction of complex traits in Korean native cattle. Genet. Sel. Evol. 55, 56 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wu, S., Xu, Y., Zhang, Q. & Ma, S. Gene–environment interaction analysis via deep learning. Genet. Epidemiol. 47, 261–286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Linder, J., Srivastava, D., Yuan, H., Agarwal, V. & Kelley, D. R. Predicting RNA-seq coverage from DNA sequence as a unifying model of gene regulation. Nat. Genet. 57, 949–961 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927–935 (2024).

    Article  CAS  PubMed  Google Scholar 

  153. Turner, S. et al. Quality control procedures for genome-wide association studies. Curr. Protoc. Hum. Genet. Ch. 1, Unit1.19 (2011).

  154. Pavan, S. et al. Recommendations for choosing the genotyping method and best practices for quality control in crop genome-wide association studies. Front. Genet. 11, 447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kumar, B. et al. Genetic diversity, population structure and linkage disequilibrium analyses in tropical maize using genotyping by sequencing. Plants (Basel) 11, 799 (2022).

    PubMed  Google Scholar 

  156. Happ, M. M., Wang, H., Graef, G. L. & Hyten, D. L. Generating high density, low cost genotype data in soybean [Glycine max (L.) Merr.]. G3 (Bethesda) 9, 2153–2160 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Martchenko, D. & Shafer, A. B. A. Contrasting whole-genome and reduced representation sequencing for population demographic and adaptive inference: an alpine mammal case study. Heredity (Edinb.) 131, 273–281 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Li, X. et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 11, 2815 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Coleman, J. R. I. et al. Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray. Brief. Funct. Genomics 15, 298–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dimou, N. L., Tsirigos, K. D., Elofsson, A. & Bagos, P. G. GWAR: robust analysis and meta-analysis of genome-wide association studies. Bioinformatics 33, 1521–1527 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Weale, M. E. Quality control for genome-wide association studies. Methods Mol. Biol. 628, 341–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Dadd, T., Weale, M. E. & Lewis, C. M. A critical evaluation of genomic control methods for genetic association studies. Genet. Epidemiol. 33, 290–298 (2009).

    Article  PubMed  Google Scholar 

  164. Sprang, M., Krüger, M., Andrade-Navarro, M. A. & Fontaine, J.-F. Statistical guidelines for quality control of next-generation sequencing techniques. Life Sci. Alliance 4, e202101113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Naito, T. & Okada, Y. Genotype imputation methods for whole and complex genomic regions utilizing deep learning technology. J. Hum. Genet. 69, 481–486 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sun, Q. et al. MagicalRsq: machine-learning-based genotype imputation quality calibration. Am. J. Hum. Genet. 109, 1986–1997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, H., Yin, L., Wang, M., Yuan, X. & Liu, X. Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Front. Genet. 10, 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Rainio, O., Teuho, J. & Klén, R. Evaluation metrics and statistical tests for machine learning. Sci. Rep. 14, 6086 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Devine, J. et al. Classifying high-dimensional phenotypes with ensemble learning. Preprint at bioRxiv https://doi.org/10.1101/2023.05.29.542750 (2023).

  170. Baker, S. G. Metrics for evaluating polygenic risk scores. JNCI Cancer Spectr. 5, pkaa106 (2021).

    Article  PubMed  Google Scholar 

  171. Naidu, G., Zuva, T. & Sibanda, E. M. in Lecture Notes in Networks and Systems (eds Silhavy, R. and Silhavy, P.) 15–25 (Springer International Publishing, 2023).

  172. Miller, C., Portlock, T., Nyaga, D. M. & O’Sullivan, J. M. A review of model evaluation metrics for machine learning in genetics and genomics. Front. Bioinform. 4, 1457619 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Legarra, A. & Reverter, A. Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genet. Sel. Evol. 50, 53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Yang, F. et al. A hybrid sampling algorithm combining synthetic minority over-sampling technique and edited nearest neighbor for missed abortion diagnosis. BMC Med. Inform. Decis. Mak. 22, 344 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bunkhumpornpat, C., Boonchieng, E., Chouvatut, V. & Lipsky, D. FLEX-SMOTE: synthetic over-sampling technique that flexibly adjusts to different minority class distributions. Patterns (NY) 5, 101073 (2024).

    Article  Google Scholar 

  176. Van den Berg, I., Meuwissen, T. H. E., MacLeod, I. M. & Goddard, M. E. Predicting the effect of reference population on the accuracy of within, across, and multibreed genomic prediction. J. Dairy Sci. 102, 3155–3174 (2019).

    Article  PubMed  Google Scholar 

  177. Gyawali, P. K. et al. Improving genetic risk prediction across diverse population by disentangling ancestry representations. Commun. Biol. 6, 964 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Moreno-Grau, S. et al. Polygenic risk score portability for common diseases across genetically diverse populations. Hum. Genomics 18, 93 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wientjes, Y. C. J. et al. Empirical and deterministic accuracies of across-population genomic prediction. Genet. Sel. Evol. 47, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 60 (2021).

    Article  Google Scholar 

  181. Acharjee, A., Larkman, J., Xu, Y., Cardoso, V. R. & Gkoutos, G. V. A random forest based biomarker discovery and power analysis framework for diagnostics research. BMC Med. Genomics 13, 178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Purdue University Office of Research Life and Health Sciences Seed Program (to M. Tegtmeyer, R.W., M. Tuinstra and L.F.B.).

Author information

Authors and Affiliations

Authors

Contributions

S.A., L.F.d.O, M. Tuinstra, R.W., L.F.B. and M. Tegtmeyer conceived the work. S.A., L.F.d.O. and M. Tegtmeyer wrote the manuscript with input from all authors. S.A., L.F.d.O, M.N.H., A.B.S., R.W., L.F.B. and M. Tegtmeyer edited and approved the final manuscript.

Corresponding author

Correspondence to Matthew Tegtmeyer.

Ethics declarations

Competing interests

All authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Julius van der Werf, Jinliang Yang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Phenotypic and genotypic data structure across species.

Supplementary Table 2

Prediction performance improvements of nonlinear models over statistical approaches.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arirangan, S., de Oliveira, L.F., Hasan, M.N. et al. Sharing approaches in predictive genomics across animals, plants and humans. Nat Genet (2026). https://doi.org/10.1038/s41588-025-02491-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41588-025-02491-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing