Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Modeling the evolutionary dynamics of clonal hematopoiesis

Abstract

Clonal hematopoiesis (CH) results from the acquisition and expansion of somatic mutations in hematopoietic stem and progenitor cells and is associated with age-related clinical sequelae, including an increased risk for cardiovascular disease, myeloid neoplasms and complications related to cancer therapy. Chemotherapy and radiation can accelerate CH expansion and further elevate the risk of adverse events, including cardiotoxicity and therapy-related myeloid neoplasms. Although CH is increasingly recognized as a clinically relevant precursor state and predictive biomarker, the long-term dynamics of CH expansion in humans remain poorly understood. Longitudinal data are often collected but not integrated with mathematical prediction. Mathematical modeling is essential for characterizing CH evolution, estimating clone fitness, inferring stem cell pool dynamics and enabling patient-level predictions. This study summarizes the current evidence on CH dynamics in humans, compares mathematical models used to predict CH progression, assesses the validity of model assumptions and discusses the implications for clinical management of individuals with these precursor conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disruption of normal hematopoiesis and the evolution of myeloid precursor disease.
Fig. 2: Modeling clonal dynamics in hematopoiesis using the Moran process under different evolutionary scenarios.
Fig. 3: Evolutionary dynamics of CH—prevalence, growth models, drift versus selection and multiclonal competition.
Fig. 4: Clonal expansion dynamics during ontogeny and homeostasis, highlighting resulting VAF distributions.

Similar content being viewed by others

References

  1. Bowman, R. L., Busque, L. & Levine, R. L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22, 157–170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367, 1449–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335–342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Williams, N. et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 602, 162–168 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Weeks, L. D. & Ebert, B. L. Causes and consequences of clonal hematopoiesis. Blood 142, 2235–2246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stiehl, T. Stem cell graft dose and composition could impact on the expansion of donor-derived clones after allogeneic hematopoietic stem cell transplantation—a virtual clinical trial. Front. Immunol. 15, 1321336 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abegunde, S. O., Buckstein, R., Wells, R. A. & Rauh, M. J. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp. Hematol. 59, 60–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Hormaechea-Agulla, D. et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 28, 1428–1442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caiado, F. et al. Aging drives Tet2+/− clonal hematopoiesis via IL-1 signaling. Blood 141, 886–903 (2023) .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weeks, L. D. et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. 2, https://doi.org/10.1056/evidoa2200310 (2023).

  11. Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malcovati, L. et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood 129, 3371–3378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song, J. et al. Co-mutation of ASXL1 and SF3B1 predicts poorer overall survival than isolated ASXL1 or SF3B1 mutations. In Vivo 37, 985–993 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bejar, R. et al. Clinical effect of point mutations in myelodysplastic syndromes. N. Engl. J. Med. 364, 2496–2506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deininger, M. W. N., Tyner, J. W. & Solary, E. Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat. Rev. Cancer 17, 425–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Williams, M. J. et al. Measuring the distribution of fitness effects in somatic evolution by combining clonal dynamics with dN/dS ratios. eLife 9, e48714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loh, P.-R. et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559, 350–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huillet, T. & Möhle, M. On the extended Moran model and its relation to coalescents with multiple collisions. Theor. Popul. Biol. 87, 5–14 (2013).

    Article  PubMed  Google Scholar 

  21. West, J., Robertson-Tessi, M. & Anderson, A. R. A. Agent-based methods facilitate integrative science in cancer. Trends Cell Biol. 33, 300–311 (2023).

    Article  PubMed  Google Scholar 

  22. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kreger, J., Mooney, J. A., Shibata, D. & MacLean, A. L. Developmental hematopoietic stem cell variation explains clonal hematopoiesis later in life. Nat. Commun. 15, 10268 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. & Abkowitz, J. L. The replication rate of human hematopoietic stem cells in vivo. Blood 117, 4460–4466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson, B., Shuai, Y., Schweinsberg, J. & Curtius, K. cloneRate: fast estimation of single-cell clonal dynamics using coalescent theory. Bioinformatics 39, btad561 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernstein, N. et al. Analysis of somatic mutations in whole blood from 200,618 individuals identifies pervasive positive selection and novel drivers of clonal hematopoiesis. Nat. Genet. 56, 1147–1155 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uryu, H. et al. Clonal evolution of hematopoietic stem cells after autologous stem cell transplantation. Nat. Genet. 57, 1695–1707 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rubinow, S. I. & Lebowitz, J. L. A mathematical model of neutrophil production and control in normal man. J. Math. Biol. 1, 187–225 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez-Brenes, I. A., Wodarz, D. & Komarova, N. L. Minimizing the risk of cancer: tissue architecture and cellular replication limits. J. R. Soc. Interface 10, 20130410 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gravenmier, C. et al. Cell state transitions drive the evolution of disease progression in B-lymphoblastic leukemia. Cancer Res. Commun. 6, 47–59 (2026).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jamieson, C. H. M. et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Mackey, M. C. & Dörmer, P. Continuous maturation of proliferating erythroid precursors. Cell Tissue Kinet. 15, 381–392 (1982).

    CAS  PubMed  Google Scholar 

  36. Haurie, C., Dale, D. C. & Mackey, M. C. Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92, 2629–2640 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Y., Stiehl, T. & Tang, M. A continuous integral model for white blood cell production. SIAM J. Appl. Math. 82, 2111–2130 (2022).

    Article  Google Scholar 

  39. Cho, H. et al. Modelling acute myeloid leukaemia in a continuum of differentiation states. Lett. Biomath. 5, S69–S98 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marciniak-Czochra, A., Stiehl, T., Ho, A. D., Jger, W. & Wagner, W. Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18, 377–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Arino, O. & Kimmel, M. Stability analysis of models of cell production systems. Math. Model. 7, 1269–1300 (1986).

    Article  Google Scholar 

  42. Komarova, N. L., Rignot, C., Fleischman, A. G. & Wodarz, D. Dynamically adjusted cell fate decisions and resilience to mutant invasion during steady-state hematopoiesis revealed by an experimentally parameterized mathematical model. Proc. Natl Acad. Sci. USA 121, e2321525121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stiehl, T. & Marciniak-Czochra, A. Characterization of stem cells using mathematical models of multistage cell lineages. Math. Comput. Model. 53, 1505–1517 (2011).

    Article  Google Scholar 

  44. Kumar, R., Shah, S. R. & Stiehl, T. Understanding the impact of feedback regulations on blood cell production and leukemia dynamics using model analysis and simulation of clinically relevant scenarios. Appl. Math. Model. 129, 340–389 (2024).

    Article  Google Scholar 

  45. Komarova, N. L. Principles of regulation of self-renewing cell lineages. PLoS ONE 8, e72847 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mon Père, N. V., Lenaerts, T., Pacheco, J. M. D. S. & Dingli, D. Multistage feedback-driven compartmental dynamics of hematopoiesis. iScience 24, 102326 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stiehl, T., Wang, W., Lutz, C. & Marciniak-Czochra, A. Mathematical modeling provides evidence for niche competition in human AML and serves as a tool to improve risk stratification. Cancer Res. 80, 3983–3992 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Stiehl, T., Baran, N., Ho, A. D. & Marciniak-Czochra, A. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res. 75, 940–949 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Stiehl, T., Lutz, C. & Marciniak-Czochra, A. Emergence of heterogeneity in acute leukemias. Biol. Direct. 11, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ahmed, I., Dingli, D., Huang, W. & Werner, B. Clonal fitness decline in somatic differentiation hierarchies. Preprint at bioRxiv https://doi.org/10.1101/2023.09.27.559763 (2023).

  51. Buck, M. C. et al. Progressive disruption of hematopoietic architecture from clonal hematopoiesis to MDS. iScience 26, 107328 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Walenda, T. et al. Feedback signals in myelodysplastic syndromes: increased self-renewal of the malignant clone suppresses normal hematopoiesis. PLoS Comput. Biol. 10, e1003599 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Père, N. V. M., Terenzi, F. & Werner, B. The dynamic fitness landscape of ageing haematopoiesis through clonal competition. Preprint at bioRxiv https://doi.org/10.1101/2024.04.16.589764 (2024).

  57. Franceschi, C. et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Ben-Crentsil, N. A. et al. RNA shielding of p65 is required to potentiate oncogenic inflammation in TET2-mutated clonal hematopoiesis. Cancer Discov. 14, 2509–2531 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pasupuleti, S. K. et al. Obesity induced inflammation exacerbates clonal hematopoiesis. J. Clin. Investig. 133, e163968 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asada, S. & Kitamura, T. Clonal hematopoiesis and associated diseases: a review of recent findings. Cancer Sci. 112, 3962–3971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cook, E. K., Luo, M. & Rauh, M. J. Clonal hematopoiesis and inflammation: partners in leukemogenesis and comorbidity. Exp. Hematol. 83, 85–94 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Yu, Z. et al. Genetic modification of inflammation and clonal hematopoiesis-associated cardiovascular risk. J. Clin. Invest. 133, e168597 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bick, A. G. et al. Genetic IL-6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124–131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Larsen, M. K. et al. Clonal haematopoiesis of indeterminate potential and impaired kidney function—a Danish general population study with 11 years follow-up. Eur. J. Haematol. 109, 576–585 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 52, 1219–1226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitchell, E. et al. The long-term effects of chemotherapy on normal blood cells. Nat. Genet. 57, 1684–1694 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ottesen, J. T. & Andersen, M. Potential of immunotherapies in treating hematological cancer-infection comorbidities—a mathematical modelling approach. Cancers (Basel) 13, 3789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ottesen, J. T. & Andersen, M. Aging, inflammation, and comorbidity in cancers—a general in silico study exemplified by myeloproliferative malignancies. Cancers (Basel) 15, 4806 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stiehl, T., Ho, A. D. & Marciniak-Czochra, A. Mathematical modeling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis. Sci. Rep. 8, 2809 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pedersen, R. K. et al. HSC niche dynamics in regeneration, pre-malignancy, and cancer: insights from mathematical modeling. Stem Cells 41, 260–270 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Andersen, M. et al. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS ONE 12, e0183620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Andersen, M., Hasselbalch, H. C., Kjær, L., Skov, V. & Ottesen, J. T. Global dynamics of healthy and cancer cells competing in the hematopoietic system. Math. Biosci. 326, 108372 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Ottesen, J. T. et al. Bridging blood cancers and inflammation: the reduced Cancitis model. J. Theor. Biol. 465, 90–108 (2019).

    Article  PubMed  Google Scholar 

  76. Sajid, Z., Andersen, M. & Ottesen, J. T. Mathematical analysis of the Cancitis model and the role of inflammation in blood cancer progression. Math. Biosci. Eng. 16, 8268–8289 (2019).

    Article  PubMed  Google Scholar 

  77. Ottesen, J. T. et al. Mathematical modeling of MPNs offers understanding and decision support for personalized treatment. Cancers (Basel) 12, 2119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mosca, M. et al. Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Blood 138, 2231–2243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boklund, T. I. et al. Mathematical modelling of stem and progenitor cell dynamics during ruxolitinib treatment of patients with myeloproliferative neoplasms. Front. Immunol. 15, 1384509 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boettcher, S. et al. Clonal hematopoiesis in donors and long-term survivors of related allogeneic hematopoietic stem cell transplantation. Blood 135, 1548–1559 (2020).

    Article  PubMed  Google Scholar 

  81. Uddin, M. M. et al. Long-term longitudinal analysis of 4,187 participants reveals insights into determinants of clonal hematopoiesis. Nat. Commun. 15, 7858 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Zeventer, I. A. et al. Evolutionary landscape of clonal hematopoiesis in 3,359 individuals from the general population. Cancer Cell 41, 1017–1031 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Robertson, N. A. et al. Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects. Nat. Med. 28, 1439–1446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Larsen, M. K. et al. The JAK2V617F and CALR mutations and risk of cancer, cardiovascular diseases, and all-cause mortality. J. Intern. Med. 299, 79–94 (2026).

    Article  CAS  PubMed  Google Scholar 

  85. Gillis, N. K. et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 18, 112–121 (2017).

    Article  PubMed  Google Scholar 

  86. Gu, M. et al. Multiparameter prediction of myeloid neoplasia risk. Nat. Genet. 55, 1523–1530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kwok, B. et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood 126, 2355–2361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Makishima, H. et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat. Genet. 49, 204–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Menssen, A. J. et al. Convergent clonal evolution of signaling gene mutations is a hallmark of myelodysplastic syndrome progression. Blood Cancer Discov. 3, 330–345 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walter, M. J. et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guess, T. et al. Distinct patterns of clonal evolution drive myelodysplastic syndrome progression to secondary acute myeloid leukemia. Blood Cancer Discov. 3, 316–329 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miles, L. A. et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587, 477–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Morita, K. et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 11, 5327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jacoby, M. A. et al. Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant. JCI Insight 3, e98962 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cai, Z. et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal mematopoiesis. Cell Stem Cell 23, 833–849 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Agarwal, P. et al. Microbial metabolite drives ageing-related clonal haematopoiesis via ALPK1. Nature 642, 201–211 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wong, T. N. et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518, 552–555 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Christopher, M. J. et al. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med. 379, 2330–2341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nangalia, J. et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica 100, e438–e442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Moeller, M. E., Père, N. V. M., Werner, B. & Huang, W. Measures of genetic diversification in somatic tissues at bulk and single-cell resolution. eLife 12, RP89780 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Stein, A. & Werner, B. On the patterns of genetic intra-tumor heterogeneity before and after treatment. Genetics 230, iyaf101 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gunnarsson, E. B., Leder, K. & Foo, J. Exact site frequency spectra of neutrally evolving tumors: a transition between power laws reveals a signature of cell viability. Theor. Popul. Biol. 142, 67–90 (2021).

    Article  PubMed  Google Scholar 

  104. Durrett, R. Branching Process Models of Cancer 1–63 (Springer, 2015).

  105. Poon, G. Y. P., Watson, C. J., Fisher, D. S. & Blundell, J. R. Synonymous mutations reveal genome-wide levels of positive selection in healthy tissues. Nat. Genet. 53, 1597–1605 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Gabbutt, C. et al. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat. Biotechnol. 40, 720–730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sørensen, A. L. et al. Elevated levels of oxidized nucleosides in individuals with the JAK2V617F mutation from a general population study. Redox Biol. 41, 101895 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hasselbalch, H. C. et al. The CHIP-clinic as the catalyst of preventive medicine. Front. Hematol. 3, 1459154 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from Moffitt Cancer Center via the Center of Excellence for Evolutionary Therapy (to S.M. and J.W.). N.V.M.P. acknowledges support from the Barts Charity. B.W. is supported by a Barts Charity Lectureship (grant MGU045) and a UKRI Future Leaders Fellowship (grant MR/V02342X/1). T.S., J.S. and J.G.H. acknowledge support from the Lundbeck Foundation (grant R335-2019-2020).

Author information

Authors and Affiliations

Authors

Contributions

S.M. designed the figures, with help from N.V.M.P., B.W., W.H. and J.W. All authors contributed to the writing, reviewing and editing of the manuscript.

Corresponding author

Correspondence to Jeffrey West.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Moritz Gerstung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzban, S., Stiehl, T., Xie, Z. et al. Modeling the evolutionary dynamics of clonal hematopoiesis. Nat Genet (2026). https://doi.org/10.1038/s41588-026-02504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41588-026-02504-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer