Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to systems-level immunomics

Abstract

The immune system is highly complex and distributed throughout an organism, with hundreds to thousands of cell states existing in parallel with diverse molecular pathways interacting in a highly dynamic and coordinated fashion. Although the characterization of individual genes and molecules is of the utmost importance for understanding immune-system function, high-throughput, high-resolution omics technologies combined with sophisticated computational modeling and machine-learning approaches are creating opportunities to complement standard immunological methods with new insights into immune-system dynamics. Like systems immunology itself, immunology researchers must take advantage of these technologies and form their own diverse networks, connecting with researchers from other disciplines. This Review is an introduction and ‘how-to guide’ for immunologists with no particular experience in the field of omics but with the intention to learn about and apply these systems-level approaches, and for immunologists who want to make the most of interdisciplinary networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestone methods in immunology.
Fig. 2: ‘How to’ in immunomics.
Fig. 3: Experimental and analytical plan.

Similar content being viewed by others

References

  1. Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aderem, A. Systems biology: its practice and challenges. Cell 121, 511–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Behr, M. A. et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods 5, 613–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Carpenter, S. et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341, 789–792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nawy, T. Single-cell epigenetics. Nat. Methods 10, 1060 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Seydel, C. Single-cell metabolomics hits its stride. Nat. Methods 18, 1452–1456 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Pai, J. A. & Satpathy, A. T. High-throughput and single-cell T cell receptor sequencing technologies. Nat. Methods 18, 881–892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yaari, G. & Kleinstein, S. H. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med. 7, 121 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liberis, E., Velickovic, P., Sormanni, P., Vendruscolo, M. & Liò, P. Parapred: antibody paratope prediction using convolutional and recurrent neural networks. Bioinformatics 34, 2944–2950 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Miho, E. et al. Computational Strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front. Immunol. 9, 224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ma, K.-Y. et al. High-throughput and high-dimensional single-cell analysis of antigen-specific CD8+ T cells. Nat. Immunol. 22, 1590–1598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schultheiß, C. et al. Next-generation sequencing of T and B cell receptor repertoires from COVID-19 patients showed signatures associated with severity of disease. Immunity 53, 442–455.e4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van den Berge, K. et al. RNA sequencing data: hitchhiker’s guide to expression analysis. Annu. Rev. Biomed. Data Sci. 2, 139–173 (2019).

  27. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rechtien, A. et al. Systems vaccinology identifies an early innate immune signature as a correlate of antibody responses to the Ebola vaccine rVSV-ZEBOV. Cell Rep. 20, 2251–2261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arunachalam, P. S. et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 596, 410–416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tu, A. A. et al. TCR sequencing paired with massively parallel 3′ RNA-seq reveals clonotypic T cell signatures. Nat. Immunol. 20, 1692–1699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Triana, S. et al. Single-cell proteo-genomic reference maps of the hematopoietic system enable the purification and massive profiling of precisely defined cell states. Nat. Immunol. 22, 1577–1589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schulte-Schrepping, J., Ferreira, H. J., Saglam, A., Hinkley, E. & Schultze, J. L. in Epigenetics of the Immune System 185–216 (Elsevier, 2020).

  38. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Article  Google Scholar 

  39. Dimitriu, M. A., Lazar-Contes, I., Roszkowski, M. & Mansuy, I. M. Single-cell multiomics techniques: from conception to applications. Front. Cell Dev. Biol. 10, 854317 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li, Y. et al. A functional genomics approach to understand variation in cytokine production in humans. Cell 167, 1099–1110.e14 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Miller, M. B. et al. Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604, 714–722 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Miao, Z. et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat. Commun. 12, 2277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mallory, X. F., Edrisi, M., Navin, N. & Nakhleh, L. Methods for copy number aberration detection from single-cell DNA-sequencing data. Genome Biol. 21, 208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schultze, J. L. Teaching ‘big data’ analysis to young immunologists. Nat. Immunol. 16, 902–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Yanai, I. & Lercher, M. A hypothesis is a liability. Genome Biol. 21, 231 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brusic, V., Gottardo, R., Kleinstein, S. H. & Davis, M. M. & HIPC steering committee. Computational resources for high-dimensional immune analysis from the Human Immunology Project Consortium. Nat. Biotechnol. 32, 146–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Jager, P. L. et al. ImmVar project: Insights and design considerations for future studies of ‘healthy’ immune variation. Semin. Immunol. 27, 51–57 (2015).

    Article  PubMed  Google Scholar 

  50. Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thomas, S. et al. The Milieu Intérieur study—an integrative approach for study of human immunological variance. Clin. Immunol. 157, 277–293 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Schultze, J. L., SYSCID consortium & Rosenstiel, P. Systems medicine in chronic inflammatory diseases. Immunity 48, 608–613 (2018).

  53. Momozawa, Y. et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat. Commun. 9, 2427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host-microbiome relationships. Cell 178, 1041–1056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reyes, M. et al. An immune-cell signature of bacterial sepsis. Nat. Med. 26, 333–340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmiedel, B. J. et al. Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type-dependent effects of disease-risk variants. Sci. Immunol. 7, eabm2508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yazar, S. et al. Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. Science 376, eabf3041 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Frishberg, A. et al. Multiple trajectory alignment reconstructs disease dynamics for discovery and clinical benefit. Cell Rep. Med. https://doi.org/10.1016/j.xcrm.2022.100652 (2022).

  61. Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Wimmers, F. et al. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 184, 3915–3935.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McShane, L. M. et al. Criteria for the use of omics-based predictors in clinical trials. Nature 502, 317–320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. De Jong, S. et al. Seasonal changes in gene expression represent cell-type composition in whole blood. Hum. Mol. Genet. 23, 2721–2728 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Adrover, J. M. et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity 50, 390–402 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Temba, G. S. et al. Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes. Nat. Immunol. 22, 287–300 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Massoni-Badosa, R. et al. Sampling time-dependent artifacts in single-cell genomics studies. Genome Biol. 21, 112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van der Wijst, M. G. P. et al. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Sci. Transl. Med. 13, eabh2624 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim, H. H., Park, Y. R., Lee, K. H., Song, Y. S. & Kim, J. H. Clinical MetaData ontology: a simple classification scheme for data elements of clinical data based on semantics. BMC Med Inf. Decis. Mak. 19, 166 (2019).

    Article  Google Scholar 

  78. Baruzzo, G. et al. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat. Methods 14, 135–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Schmid, K. T. et al. scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies. Nat. Commun. 12, 6625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsimR: power analysis for bulk and single cell RNA-seq experiments. Bioinformatics 33, 3486–3488 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Zappia, L. & Theis, F. J. Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biol. 22, 301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013).

    Article  PubMed  Google Scholar 

  83. Aschenbrenner, A. C. et al. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med 13, 7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Reimand, J. et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 14, 482–517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Chu, X. et al. Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease. Genome Biol. 22, 198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Argelaguet, R. et al. Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rautenstrauch, P., Vlot, A. H. C., Saran, S. & Ohler, U. Intricacies of single-cell multi-omics data integration. Trends Genet. 38, 128–139 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Li, R., Li, L., Xu, Y. & Yang, J. Machine learning meets omics: applications and perspectives. Brief. Bioinforma. 23, bbab460 (2022).

    Article  Google Scholar 

  94. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Scholz, C. J. et al. FASTGenomics: an analytical ecosystem for single-cell RNA sequencing data. Preprint at bioRxiv https://doi.org/10.1101/272476 (2018).

    Article  Google Scholar 

  97. Bonaguro, L. et al. CRELD1 modulates homeostasis of the immune system in mice and humans. Nat. Immunol. 21, 1517–1527 (2020).

    Article  PubMed  Google Scholar 

  98. Przybyla, L. & Gilbert, L. A. A new era in functional genomics screens. Nat. Rev. Genet. 23, 89–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Collado-Torres, L. et al. Reproducible RNA-seq analysis using recount2. Nat. Biotechnol. 35, 319–321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Krämer, B. et al. Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity 54, 2650–2669.e14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bernardes, J. P. et al. Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity 53, 1296–1314.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Georg, P. et al. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell 185, 493–512.e25 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell rna profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 18, 635–642 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896.e15 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. De Domenico, E. et al. Optimized workflow for single-cell transcriptomics on infectious diseases including COVID-19. STAR Protoc. 1, 100233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Cohen, Y. C. et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 27, 491–503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281.e24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Warnat-Herresthal, S. et al. Swarm Learning as a privacy-preserving machine learning approach for disease classification. Preprint at bioRxiv https://doi.org/10.1101/2020.06.25.171009 (2020).

    Article  Google Scholar 

  111. Mair, F. et al. A targeted multi-omic analysis approach measures protein expression and low-abundance transcripts on the single-cell level. Cell Rep. 31, 107499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. De Simone, M., Rossetti, G. & Pagani, M. Single cell T cell receptor sequencing: techniques and future challenges. Front. Immunol. 9, 1638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang, W. et al. A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity. Sci. Adv. 7, eabf5835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Rotem, A. et al. Single-cell ChIP–seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu, F., Olson, B. G. & Yao, J. DamID-seq: Genome-wide mapping of protein-dna interactions by high throughput sequencing of adenine-methylated DNA Fragments. J. Vis. Exp. e53620 (2016).

  120. Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Gao, W., Lai, B., Ni, B. & Zhao, K. Genome-wide profiling of nucleosome position and chromatin accessibility in single cells using scMNase-seq. Nat. Protoc. 15, 68–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497–2506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pott, S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife 6, e23203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Song, L. & Crawford, G. E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010, pdb.prot5384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535–1548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Belton, J.-M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Ramani, V. et al. Sci-Hi-C: a single-cell Hi-C method for mapping 3D genome organization in large number of single cells. Methods 170, 61–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).

    Article  Google Scholar 

  134. Cheung, P. et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173, 1385–1397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Katzenelenbogen, Y. et al. Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in Cancer. Cell 182, 872–885 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Han, X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 12, 668–679 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Li, Z. et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat. Commun. 12, 2869 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Davis, S. et al. Seandavi/Awesome-Single-Cell: 2018-06-20-1. Zenodo https://doi.org/10.5281/zenodo.1294021 (2018).

    Article  Google Scholar 

  140. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Stevens, I. et al. Ten simple rules for annotating sequencing experiments. PLoS Comput. Biol. 16, e1008260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vita, R., Overton, J. A., Mungall, C. J., Sette, A. & Peters, B. FAIR principles and the IEDB: short-term improvements and a long-term vision of OBO-foundry mediated machine-actionable interoperability. Database 2018, bax105 (2018).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.L.S. is supported by the German Research Foundation (DFG) under Germany’s Excellence Strategy (EXC2151-390873048), as well as under SCHU 950/8-1; GRK 2168, TP11; SFB704, the BMBF-funded excellence project Diet–Body–Brain (DietBB); and the EU project SYSCID under grant number 733100. A.C.A. is supported by DFG under AS 637/1-1; AS 637/2-1; AS 637/3-1 and SFB1454/P02 (project no. 432325352). M.B. is supported by DFG (IRTG2168-272482170, SFB1454-432325352).

Author information

Authors and Affiliations

Authors

Contributions

L.B., J.S.-S. and J.L.S. developed the concept. L.B., J.S.-S., T.U., M.B., A.C.A. and J.L.S. discussed the concept. L.B. and J.L.S. designed the figures. L.B., J.S.-S., T.U., M.B. and J.L.S. wrote the original draft. L.B., J.S.-S., T.U., M.B., A.C.A. and J.L.S. reviewed and edited the manuscript.

Corresponding author

Correspondence to Joachim L. Schultze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Uri Hershberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. N. Bernard was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaguro, L., Schulte-Schrepping, J., Ulas, T. et al. A guide to systems-level immunomics. Nat Immunol 23, 1412–1423 (2022). https://doi.org/10.1038/s41590-022-01309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-022-01309-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research