Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intestinal neuron-associated macrophages in health and disease

Abstract

Neuron–macrophage cross-talk in the intestine plays a crucial role in the maintenance of tissue homeostasis and the modulation of immune responses throughout life. Here, we describe how gut neuron–macrophage interactions shift macrophage phenotype and function from early development to adulthood and how this cross-talk modulates the macrophage function in response to infection and inflammation. We highlight how a neural microenvironment instructs a neuron-associated macrophage phenotype in the gut and show that their phenotype may resemble nerve-associated macrophages in other organs. Finally, we note that the loss of neuron-associated macrophages or a shift in their phenotype can contribute to enteric neurodegeneration in the gastrointestinal tract, causing gut motility disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuron-associated macrophages in development.
Fig. 2: Neuron-associated macrophages in adulthood.
Fig. 3: Neuromodulation of macrophage function in disease.

Similar content being viewed by others

References

  1. Guilliams, M., Thierry, G. R., Bonnardel, J. & Bajenoff, M. Establishment and maintenance of the macrophage niche. Immunity 52, 434–451 (2020).

    CAS  PubMed  Google Scholar 

  2. Sehgal, A., Irvine, K. M. & Hume, D. A. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin. Immunol. 54, 101509 (2021).

  3. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gschwend, J. et al. Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. J. Exp. Med. 218, e20210745 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638–654 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. De Schepper, S. et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175, 400–415 (2018).

    PubMed  Google Scholar 

  7. Honda, M. et al. Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome. Nat. Commun. 11, 1329 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Viola, M. F. et al. Dedicated macrophages organize and maintain the enteric nervous system. Nature 618, 818–826 (2023).

    CAS  PubMed  Google Scholar 

  10. T’Jonck, W., Guilliams, M. & Bonnardel, J. Niche signals and transcription factors involved in tissue-resident macrophage development. Cell Immunol. 330, 43–53 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Varol, C., Mildner, A. & Jung, S. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675 (2015).

    CAS  PubMed  Google Scholar 

  12. Shaw, T. N. et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. 215, 1507–1518 (2018).

  13. Michel, K. et al. How big is the little brain in the gut? Neuronal numbers in the enteric nervous system of mice, Guinea pig, and human. Neurogastroenterol. Motil. 34, e14440 (2022).

    CAS  PubMed  Google Scholar 

  14. Fung, C. & Vanden Berghe, P. Functional circuits and signal processing in the enteric nervous system. Cell. Mol. Life Sci. 77, 4505–4522 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bronner, M. E. & LeDouarin, N. M. Development and evolution of the neural crest: an overview. Dev. Biol. 366, 2–9 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cui, J., Michaille, J. J., Jiang, W. & Zile, M. H. Retinoid receptors and vitamin A deficiency: differential patterns of transcription during early avian development and the rapid induction of RARs by retinoic acid. Dev. Biol. 260, 496–511 (2003).

    CAS  PubMed  Google Scholar 

  17. Simkin, J. E., Zhang, D., Rollo, B. N. & Newgreen, D. F. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS ONE 8, e64077 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Fu, M., Lui, V. C. H., Sham, M. H., Cheung, A. N. Y. & Tam, P. K. H. HOXB5 expression is spatially and temporarily regulated in human embryonic gut during neural crest cell colonization and differentiation of enteric neuroblasts. Dev. Dyn. 228, 1–10 (2003).

    CAS  PubMed  Google Scholar 

  19. Anderson, R. B., Stewart, A. L. & Young, H. M. Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res. 323, 11–25 (2006).

    CAS  PubMed  Google Scholar 

  20. Burns, A. J. & Le Douarin, N. M. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125, 4335–4347 (1998).

    CAS  PubMed  Google Scholar 

  21. Uesaka, T., Nagashimada, M. & Enomoto, H. Neuronal differentiation in schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J. Neurosci. 35, 9879–9888 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bergner, A. J. et al. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J. Comp. Neurol. 522, 514–527 (2014).

    CAS  PubMed  Google Scholar 

  23. Memic, F. et al. Transcription and signaling regulators in developing neuronal subtypes of mouse and human enteric nervous system. Gastroenterology 154, 624–636 (2018).

    CAS  PubMed  Google Scholar 

  24. Hao, M. M. & Young, H. M. Development of enteric neuron diversity. J. Cell. Mol. Med. 13, 1193–1210 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagy, N. & Goldstein, A. M. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin. Cell Dev. Biol. 66, 94–106 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Parathan, P., Wang, Y., Leembruggen, A. J., Bornstein, J. C. & Foong, J. P. The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Dev. Biol. 458, 75–87 (2020).

    CAS  PubMed  Google Scholar 

  27. Vries, Pde, Soret, R., Suply, E., Heloury, Y. & Neunlist, M. Postnatal development of myenteric neurochemical phenotype and impact on neuromuscular transmission in the rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 299, 539–547 (2010).

    Google Scholar 

  28. Avetisyan, M. et al. Muscularis macrophage development in the absence of an enteric nervous system. Proc. Natl Acad. Sci. USA 115, 4696–4701 (2018).

  29. Dziabis, J. E. & Bilbo, S. D. Microglia and sensitive periods in brain development. Curr. Top. Behav. Neurosci. 53, 55–78 (2022).

    PubMed  Google Scholar 

  30. Pendse, M. et al. Macrophages regulate gastrointestinal motility through complement component 1q. eLife 12, e78558 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  32. Kiss, M. et al. Junctional adhesion molecule-A is dispensable for myeloid cell recruitment and diversification in the tumor microenvironment. Front. Immunol. 13, 1003975 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ydens, E. et al. Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nat. Neurosci. 23, 676–689 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, P. L. et al. Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nat. Commun. 11, 2552 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolter, J., Kierdorf, K. & Henneke, P. Origin and differentiation of nerve-associated macrophages. J. Immunol. 204, 271–279 (2020).

    CAS  PubMed  Google Scholar 

  36. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    CAS  PubMed  Google Scholar 

  37. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. English, K. et al. The liver contains distinct interconnected networks of CX3CR1+ macrophages, XCR1+ type 1 and CD301a+ type 2 conventional dendritic cells embedded within portal tracts. Immunol. Cell Biol. 100, 394–408 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ural, B. B. et al. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci. Immunol. 5, eaax8756 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS  PubMed  Google Scholar 

  41. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. Mechanism of activation of the TGF-beta receptor. Nature 370, 341–347 (1994).

    CAS  PubMed  Google Scholar 

  47. Ten Dijke, P., Miyazono, K. & Heldin, C. H. Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr. Opin. Cell Biol. 8, 139–145 (1996).

    PubMed  Google Scholar 

  48. Massagué, J. & Wotton, D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 19, 1745–1754 (2000).

    PubMed  PubMed Central  Google Scholar 

  49. Arnold, T. D. et al. Impaired αVβ8 and TGFβ signaling lead to microglial dysmaturation and neuromotor dysfunction. J. Exp. Med. 216, 900–915 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zöller, T. et al. Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat. Commun. 9, 4011 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Elmore, M. R. P. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dai, X.-M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    CAS  PubMed  Google Scholar 

  54. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Blevins, G. & Fedoroff, S. Microglia in colony-stimulating factor 1-deficient op/op mice. J. Neurosci. Res. 40, 535–544 (1995).

    CAS  PubMed  Google Scholar 

  56. Kondo, Y. & Duncan, I. D. Selective reduction in microglia density and function in the white matter of colony-stimulating factor-1-deficient mice. J. Neurosci. Res. 87, 2686–2695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. MacDonald, K. P. A. et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116, 3955–3963 (2010).

    CAS  PubMed  Google Scholar 

  59. Tushinski, R. J. et al. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28, 71–81 (1982).

    CAS  PubMed  Google Scholar 

  60. Grubišić, V. et al. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep. 32, 108100 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Chalazonitis, A. et al. Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J. Comp. Neurol. 509, 474–492 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stakenborg, N., Gomez-Pinilla, P. J. & Boeckxstaens, G. E. Postoperative ileus: pathophysiology, current therapeutic approaches. Handb. Exp. Pharmacol. 239, 39–57 (2017).

    CAS  PubMed  Google Scholar 

  63. Türler, A. et al. Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus. Ann. Surg. 244, 220–229 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. Kalff, J. C., Schraut, W. H., Billiar, T. R., Simmons, R. L. & Bauer, A. J. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology 118, 316–327 (2000).

    CAS  PubMed  Google Scholar 

  65. Schwarz, N. T. et al. Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology 121, 1354–1371 (2001).

    CAS  PubMed  Google Scholar 

  66. Wehner, S. et al. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56, 176–185 (2007).

    CAS  PubMed  Google Scholar 

  67. Schneider, R. et al. A novel P2X2-dependent purinergic mechanism of enteric gliosis in intestinal inflammation. EMBO Mol. Med. 13, e12724 (2021).

    CAS  PubMed  Google Scholar 

  68. Leven, P. et al. β-adrenergic signaling triggers enteric glial reactivity and acute enteric gliosis during surgery. J. Neuroinflammation 20, 255 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rosenbaum, C. et al. Activation of myenteric glia during acute inflammation in vitro and in vivo. PLoS ONE 11, e0151335 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Liñán-Rico, A. et al. Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype: implications for GI infection, IBD, POI, neurological, motility, and GI disorders. Inflamm. Bowel Dis. 22, 1812–1834 (2016).

    PubMed  Google Scholar 

  71. Schneider, R. et al. IL-1-dependent enteric gliosis guides intestinal inflammation and dysmotility and modulates macrophage function. Commun. Biol. 5, 811 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hupa, K. J. et al. AIM2 inflammasome-derived IL-1β induces postoperative ileus in mice. Sci. Rep. 9, 10602 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Stoffels, B. et al. Postoperative ileus involves interleukin-1 receptor signaling in enteric glia. Gastroenterology 146, 176–187 (2014).

    CAS  PubMed  Google Scholar 

  74. Stakenborg, M. et al. Enteric glial cells favor accumulation of anti-inflammatory macrophages during the resolution of muscularis inflammation. Mucosal Immunol. 15, 1296–1308 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chandrasekharan, B. & Srinivasan, S. Diabetes and the enteric nervous system. Neurogastroenterol. Motil. 19, 951–960 (2007).

  76. Marathe, C. S., Rayner, C. K., Wu, T., Jones, K. L. & Horowitz, M. Gastrointestinal disorders in diabetes. In Endotext (eds. Feingold, K. R. et al.) (MDText.com, 2024).

  77. Cipriani, G. et al. Diabetic Csf1op/op mice lacking macrophages are protected against the development of delayed gastric emptying. Cell. Mol. Gastroenterol. Hepatol. 11, 40–47 (2016).

    Google Scholar 

  78. Cipriani, G. et al. Change in populations of macrophages promotes development of delayed gastric emptying in mice. Gastroenterology 154, 2122–2136 (2018).

    CAS  PubMed  Google Scholar 

  79. Choi, K. M. et al. Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology 135, 2055–2064 (2008).

    CAS  PubMed  Google Scholar 

  80. Choi, K. M. et al. CD206-positive M2 macrophages that express heme oxygenase-1 protect against diabetic gastroparesis in mice. Gastroenterology 138, 2399–2409 (2010).

  81. Bernard, C. E. et al. Association of low numbers of CD206-positive cells with loss of ICC in the gastric body of patients with diabetic gastroparesis. Neurogastroenterol. Motil. 26, 1275–1284 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Grover, M. et al. Diabetic and idiopathic gastroparesis is associated with loss of CD206-positive macrophages in the gastric antrum. Neurogastroenterol. Motil 29, e13018 (2017).

  83. Chikkamenahalli, L. L. et al. Single cell atlas of human gastric muscle immune cells and macrophage-driven changes in idiopathic gastroparesis. iScience 27, 108991 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Grover, M. et al. Proteomics in gastroparesis: unique and overlapping protein signatures in diabetic and idiopathic gastroparesis. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G716–G726 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Grover, M. et al. Transcriptomic signatures reveal immune dysregulation in human diabetic and idiopathic gastroparesis. BMC Med. Genomics 11, 62 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Choi, K. M. et al. Induction of heme oxygenase reverses diabetic gastroparesis in NOD/Ltj mice. Gastroenterology 134, A-123 (2008).

    Google Scholar 

  87. Geboes, K. & Collins, S. Structural abnormalities of the nervous system in Crohn’s disease and ulcerative colitis. Neurogastroenterol. Motil. 10, 189–202 (1998).

    CAS  PubMed  Google Scholar 

  88. Sharkey, K. A. & Kroese, A. B. A. Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat. Rec. 262, 79–90 (2001).

    CAS  PubMed  Google Scholar 

  89. Stavely, R., Abalo, R. & Nurgali, K. Targeting enteric neurons and plexitis for the management of inflammatory bowel disease. Curr. Drug Targets 21, 1428–1439 (2020).

    CAS  PubMed  Google Scholar 

  90. Lomax, A. E., Fernández, E. & Sharkey, K. A. Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol. Motil. 17, 4–15 (2005).

    CAS  PubMed  Google Scholar 

  91. Spear, E. T. & Mawe, G. M. Enteric neuroplasticity and dysmotility in inflammatory disease: key players and possible therapeutic targets. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G853–G861 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Galeazzi, F., Haapala, E. M., Van Rooijen, N., Vallance, B. A. & Collins, S. M. Inflammation-induced impairment of enteric nerve function in nematode-infected mice is macrophage dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G259–G265 (2000).

  93. Jacobson, K., McHugh, K. & Collins, S. M. Experimental colitis alters myenteric nerve function at inflamed and noninflamed sites in the rat. Gastroenterology 109, 718–722 (1995).

    CAS  PubMed  Google Scholar 

  94. Dora, D. et al. Evidence of a myenteric plexus barrier and its macrophage-dependent degradation during murine colitis: implications in enteric neuroinflammation. Cell Mol. Gastroenterol. Hepatol. 12, 1617–1641 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ferrante, M. et al. The value of myenteric plexitis to predict early postoperative Crohn’s disease recurrence. Gastroenterology 130, 1595–1606 (2006).

    PubMed  Google Scholar 

  96. Becker, L. et al. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut 67, 827–836 (2017).

  97. Bishop, E. S. et al. Age-dependent microglial disease phenotype results in functional decline in gut macrophages. Gastro. Hep. Adv. 2, 261–276 (2023).

    PubMed  Google Scholar 

  98. Lavin, Y., Mortha, A., Rahman, A. & Merad, M. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15, 731–744 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271 (2019).

    CAS  PubMed  Google Scholar 

  100. Norden, D. M. & Godbout, J. P. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol. Appl. Neurobiol. 39, 19–34 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cribbs, D. H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflammation 9, 179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Henry, C. J., Huang, Y., Wynne, A. M. & Godbout, J. P. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav. Immun. 23, 309–317 (2009).

    CAS  PubMed  Google Scholar 

  103. Godbout, J. P. et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 19, 1329–1331 (2005).

    CAS  PubMed  Google Scholar 

  104. Frank, M. G., Barrientos, R. M., Watkins, L. R. & Maier, S. F. Aging sensitizes rapidly isolated hippocampal microglia to LPS ex vivo. J. Neuroimmunol. 226, 181–184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Moore, B. A. et al. Altered inflammatory gene expression underlies increased susceptibility to murine postoperative ileus with advancing age. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1650–G1659 (2007).

  106. Verheijden, S., Schepper, S., De & Boeckxstaens, G. E. Neuron-macrophage crosstalk in the intestine: a “microglia” perspective. Front. Cell Neurosci. 9, 1–6 (2015).

    Google Scholar 

  107. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78(2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stakenborg, N., Giovangiulio, M., Di, Boeckxstaens, G. E. & Matteoli, G. The versatile role of the vagus nerve in the gastrointestinal tract. EMJ Gastroenterol. Gastroenterol. 2013 1, 106–114 (2013).

    Google Scholar 

  109. Stakenborg, N., Viola, M. F. & Boeckxstaens, G. E. Intestinal neuro-immune interactions: focus on macrophages, mast cells and innate lymphoid cells. Curr. Opin. Neurobiol. 62, 68–75 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Stakenborg, N. & Boeckxstaens, G. E. Bioelectronics in the brain–gut axis: focus on inflammatory bowel disease (IBD). Int. Immunol. 33, 337–348 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Cailotto, C. et al. Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS ONE 9, e87785 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Goehler, L. E. et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun. 19, 334–344 (2005).

    PubMed  Google Scholar 

  113. Matteoli, G. et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63, 938–948 (2013).

    PubMed  Google Scholar 

  114. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2–STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    PubMed  Google Scholar 

  115. Stakenborg, N. et al. Abdominal vagus nerve stimulation as a new therapeutic approach to prevent postoperative ileus. Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.13075 (2017).

    Article  PubMed  Google Scholar 

  116. Stakenborg, N. et al. Preoperative administration of the 5-HT4 receptor agonist prucalopride reduces intestinal inflammation and shortens postoperative ileus via cholinergic enteric neurons. Gut 68, 1406–1416 (2019).

    CAS  PubMed  Google Scholar 

  117. Meroni, E. et al. Vagus nerve stimulation promotes epithelial proliferation and controls colon monocyte infiltration during DSS-induced colitis. Front. Med. 8, 694268 (2021).

    Google Scholar 

  118. Bonaz, B. et al. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterol. Motil. 28, 948–953 (2016).

    CAS  PubMed  Google Scholar 

  119. Meroni, E. et al. Functional characterization of oxazolone-induced colitis and survival improvement by vagus nerve stimulation. PLoS ONE 13, e0197487 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Sinniger, V. et al. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn’s disease. Neurogastroenterol. Motil. 32, e13911 (2020).

    CAS  PubMed  Google Scholar 

  121. D’Haens, G. et al. The effects of vagus nerve stimulation in biologic-refractory Crohn’s disease: a prospective clinical trial. J. Crohns Colitis 12, S397–S398 (2018).

    Google Scholar 

  122. Payne, S. C. et al. Anti-inflammatory effects of abdominal vagus nerve stimulation on experimental intestinal inflammation. Front. Neurosci. 13, 418 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Caravaca, A. S. et al. An effective method for acute vagus nerve stimulation in experimental inflammation. Front. Neurosci. 13, 877 (2019).

    PubMed  PubMed Central  Google Scholar 

  124. Di Giovangiulio, M. et al. Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the alpha-7 nicotinic receptor. Mol. Med. 22, 464–476 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Domanska, D. et al. Single-cell transcriptomic analysis of human colonic macrophages reveals niche-specific subsets. J. Exp. Med. 219, e20211846 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bujko, A. et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J. Exp. Med. 215, 441–458 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bain, C. C. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6, 498–510 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC) Advanced Grant (ERC- 833816-NEUMACS) to G.B. M.F.V is supported by an EMBO postdoctoral fellowship (ALTF 873-2023).

Author information

Authors and Affiliations

Authors

Contributions

N.S., M.F.V. and G.B. wrote the manuscript.

Corresponding author

Correspondence to Guy Boeckxstaens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks John Grainger and Gerard Eberl for their contribution to the peer review of this work. Primary Handling Editor: S. Houston in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stakenborg, N., Viola, M.F. & Boeckxstaens, G. Intestinal neuron-associated macrophages in health and disease. Nat Immunol 26, 1004–1013 (2025). https://doi.org/10.1038/s41590-025-02150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-025-02150-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing