Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene–environment interactions shape the host–microbial interface in inflammatory bowel disease

Abstract

Inflammatory bowel disease (IBD) is a complex, multifactorial inflammatory disorder of the gut characterized by an imbalance in host–microbiota interactions. Here, we review how early events of IBD are shaped by gene–environment interactions, especially those involving microbial perturbations. Those perturbations eventually lead to chronic inflammation and tissue damage of the gastrointestinal tract. IBD is a multi-hit process in which infectious and noninfectious agents initiate a cascade of immune activation in genetically susceptible individuals. Ultimately the process results in irreversible immunological and physical scarring. These interactions are host specific, with genetic variants influencing the threshold for immune activation and the degree of damage, thus leading to variability in disease progression and therapeutic outcomes. Finally, we discuss challenges, including addressing health disparities and potential strategies for more personalized and effective therapies that target host–microbiota interactions during the preclinical phase of IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The immune–microbiota interface in the intestine.
Fig. 2: Genetic and environmental determinants of IBD.
Fig. 3: Multi-hit disease model of IBD.

Similar content being viewed by others

References

  1. Rudbaek, J. J. et al. Deciphering the different phases of preclinical inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 21, 86–100 (2023).

  2. Ramanan, D. & Cadwell, K. Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe 19, 434–441 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chikina, A. & Matic Vignjevic, D. At the right time in the right place: how do luminal gradients position the microbiota along the gut? Cells Dev. 168, 203712 (2021).

    CAS  PubMed  Google Scholar 

  4. Gu, Y. et al. Immune microniches shape intestinal Treg function. Nature 628, 854–862 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Edelblum, K. L. et al. γδ intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology 148, 1417–1426 (2015).

    PubMed  Google Scholar 

  7. Koch, M. A. et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165, 827–841 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vujkovic-Cvijin, I. et al. The systemic anti-microbiota IgG repertoire can identify gut bacteria that translocate across gut barrier surfaces. Sci. Transl. Med. 14, eabl3927 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagashima, K. et al. Mapping the T cell repertoire to a complex gut bacterial community. Nature 621, 162–170 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sefik, E. et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Atarashi, K. et al. TH17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector TH17 responses. Cell 164, 324 (2016).

    CAS  PubMed  Google Scholar 

  15. Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chai, J. N. et al. Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci. Immunol. 2, eaal5068 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Brodin, P. & Davis, M. M. Human immune system variation. Nat. Rev. Immunol. 17, 21–29 (2017).

    CAS  PubMed  Google Scholar 

  18. Bakker, O. B. et al. Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses. Nat. Immunol. 19, 776–786 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, J. D. et al. Rewilding Nod2 and Atg16l1 mutant mice uncovers genetic and environmental contributions to microbial responses and immune cell composition. Cell Host Microbe 27, 830–840 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeung, F. et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe 27, 809–822 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carr, E. J. et al. The cellular composition of the human immune system is shaped by age and cohabitation. Nat. Immunol. 17, 461–468 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Patin, E. et al. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat. Immunol. 19, 302–314 (2018).

    CAS  PubMed  Google Scholar 

  24. Saint-Andre, V. et al. Smoking changes adaptive immunity with persistent effects. Nature 626, 827–835 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cader, M. Z. et al. FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle. Cell 180, 278–295 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oyesola, O. et al. Genetic and environmental interactions contribute to immune variation in rewilded mice. Nat. Immunol. 25, 1270–1282 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng, H. B., de la Morena, M. T. & Suskind, D. L. The growing need to understand very early onset inflammatory bowel disease. Front Immunol. 12, 675186 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bolton, C. et al. An integrated taxonomy for monogenic inflammatory bowel disease. Gastroenterology 162, 859–876 (2022).

    CAS  PubMed  Google Scholar 

  29. Sazonovs, A. et al. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat. Genet. 54, 1275–1283 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stankey, C. T. et al. A disease-associated gene desert directs macrophage inflammation through ETS2. Nature 630, 447–456 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Keestra-Gounder, A. M. et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394–397 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lupfer, C. et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol. 14, 480–488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl Acad. Sci. USA 106, 15813–15818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Caruso, R. et al. A specific gene–microbe interaction drives the development of Crohn’s disease-like colitis in mice. Sci. Immunol. 4, eaaw4341 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Goethel, A. et al. Nod2 influences microbial resilience and susceptibility to colitis following antibiotic exposure. Mucosal Immunol. 12, 720–732 (2019).

    CAS  PubMed  Google Scholar 

  37. Ramanan, D., Tang, M. S., Bowcutt, R., Loke, P. & Cadwell, K. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 41, 311–324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nayar, S. et al. A myeloid–stromal niche and gp130 rescue in NOD2-driven Crohn’s disease. Nature 593, 275–281 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, Y. G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769–780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramanan, D. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science 352, 608–612 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hugot, J. P. et al. Prevalence of CARD15/NOD2 mutations in Caucasian healthy people. Am. J. Gastroenterol. 102, 1259–1267 (2007).

    CAS  PubMed  Google Scholar 

  42. Jang, K. K. et al. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. Cell Host Microbe 31, 1450–1468 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, L. et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 568, 405–409 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao, J. et al. Gut microbial DL-endopeptidase alleviates Crohn’s disease via the NOD2 pathway. Cell Host Microbe 30, 1435–1449 (2022).

    CAS  PubMed  Google Scholar 

  45. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    CAS  PubMed  Google Scholar 

  46. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97 (2010).

    CAS  PubMed  Google Scholar 

  47. Matsuzawa-Ishimoto, Y., Hwang, S. & Cadwell, K. Autophagy and inflammation. Annu. Rev. Immunol. 36, 73–101 (2018).

    CAS  PubMed  Google Scholar 

  48. Chu, H. et al. Gene–microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Marchiando, A. M. et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14, 216–224 (2013).

    CAS  PubMed  Google Scholar 

  50. Martin, P. K. et al. Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nat. Microbiol. 3, 1131–1141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    CAS  PubMed  Google Scholar 

  52. Lahiri, A., Hedl, M. & Abraham, C. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation. Proc. Natl Acad. Sci. USA 112, 10461–10466 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Matsuzawa-Ishimoto, Y. et al. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J. Exp. Med. 214, 3687–3705 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsuzawa-Ishimoto, Y. et al. An intestinal organoid-based platform that recreates susceptibility to T cell-mediated tissue injury. Blood 135, 2388–2401 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bel, S. et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science 357, 1047–1052 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Burger, E. et al. Loss of Paneth cell autophagy causes acute susceptibility to Toxoplasma gondii-mediated inflammation. Cell Host Microbe 23, 177–190 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, T. C. et al. Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn’s disease. J. Clin. Invest. 128, 5110–5122 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Neil, J. A. et al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat. Microbiol. 4, 1737–1749 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsuzawa-Ishimoto, Y. et al. The γδ IEL effector API5 masks genetic susceptibility to Paneth cell death. Nature 610, 547–554 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, W. et al. Dysregulation of gammadelta intraepithelial lymphocytes precedes Crohn’s disease-like ileitis. Sci. Immunol. 10, eadk7429 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dart, R. J. et al. Conserved gammadelta T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. Science 381, eadh0301 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jaeger, N. et al. Single-cell analyses of Crohn’s disease tissues reveal intestinal intraepithelial T cells heterogeneity and altered subset distributions. Nat. Commun. 12, 1921 (2021).

    PubMed  PubMed Central  Google Scholar 

  68. Sun, L. et al. Type I interferons link viral infection to enhanced epithelial turnover and repair. Cell Host Microbe 17, 85–97 (2014).

  69. Mehto, S. et al. The Crohn’s disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy. Mol. Cell 73, 429–445 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Q. et al. Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat. Immunol. 16, 918–926 (2015).

    CAS  PubMed  Google Scholar 

  73. Sun, S. et al. Macrophage LRRK2 hyperactivity impairs autophagy and induces Paneth cell dysfunction. Sci. Immunol. 9, eadi7907 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tasegian, A. et al. LRRK2 is not required for lysozyme expression in Paneth cells. Nat. Immunol. 25, 2037–2039 (2024).

    CAS  PubMed  Google Scholar 

  75. Hedl, M., Zheng, S. & Abraham, C. The IL18RAP region disease polymorphism decreases IL-18RAP/IL-18R1/IL-1R1 expression and signaling through innate receptor-initiated pathways. J. Immunol. 192, 5924–5932 (2014).

    CAS  PubMed  Google Scholar 

  76. Taylor, G. A. et al. Irgm1-deficiency leads to myeloid dysfunction in colon lamina propria and susceptibility to the intestinal pathogen Citrobacter rodentium. PLoS Pathog. 16, e1008553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jarret, A. et al. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. Cell 180, 50–63 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shouval, D. S. et al. Interleukin 1beta mediates intestinal inflammation in mice and patients with interleukin 10 receptor deficiency. Gastroenterology 151, 1100–1104 (2016).

    CAS  PubMed  Google Scholar 

  79. Shouval, D. S. et al. Enhanced TH17 responses in patients with IL10 receptor deficiency and infantile-onset IBD. Inflamm. Bowel Dis. 23, 1950–1961 (2017).

    PubMed  Google Scholar 

  80. Mohanan, V. et al. C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 359, 1161–1166 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Luong, P. et al. INAVA-ARNO complexes bridge mucosal barrier function with inflammatory signaling. eLife 7, e38539 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    CAS  PubMed  Google Scholar 

  83. Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut TH17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ananthakrishnan, A. N., Whelan, K., Allegretti, J. R. & Sokol, H. Diet and microbiome-directed therapy 2.0 for IBD. Clin. Gastroenterol. Hepatol. 23, 406–418 (2024).

  85. Peery, A. F. et al. AGA clinical practice guideline on fecal microbiota-based therapies for select gastrointestinal diseases. Gastroenterology 166, 409–434 (2024).

    CAS  PubMed  Google Scholar 

  86. Aschard, H. et al. Genetic effects on the commensal microbiota in inflammatory bowel disease patients. PLoS Genet. 15, e1008018 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    CAS  PubMed  Google Scholar 

  90. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  91. Byndloss, M. X. et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359–365 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rojas-Tapias, D. F. et al. Inflammation-associated nitrate facilitates ectopic colonization of oral bacterium Veillonella parvula in the intestine. Nat. Microbiol. 7, 1673–1685 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kumbhari, A. et al. Discovery of disease-adapted bacterial lineages in inflammatory bowel diseases. Cell Host Microbe 32, 1147–1162 (2024).

    CAS  PubMed  Google Scholar 

  95. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lopez, C. A. et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353, 1249–1253 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ladinsky, M. S. et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science 363, eaat4042 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin, X. et al. IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity 55, 237–253 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Maxwell, J. R. et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity 43, 739–750 (2015).

    CAS  PubMed  Google Scholar 

  102. Song, X. et al. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity 43, 488–501 (2015).

    CAS  PubMed  Google Scholar 

  103. Kumar, P. et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44, 659–671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    CAS  PubMed  Google Scholar 

  105. Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, M. et al. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49, 151–163 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu, J. et al. Microbiota-induced alteration of kynurenine metabolism in macrophages drives formation of creeping fat in Crohn’s disease. Cell Host Microbe 32, 1927–1943 (2024).

    CAS  PubMed  Google Scholar 

  109. Yu, S. et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine. Immunity 53, 398–416 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Savage, H. P. et al. Epithelial hypoxia maintains colonization resistance against Candida albicans. Cell Host Microbe 32, 1103–1113 (2024).

    CAS  PubMed  Google Scholar 

  115. Howitt, M. R. et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329–1333 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gerrick, E. R. et al. Metabolic diversity in commensal protists regulates intestinal immunity and trans-kingdom competition. Cell 187, 62–78 (2024).

    CAS  PubMed  Google Scholar 

  117. Chudnovskiy, A. et al. Host–protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Dallari, S. et al. Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host Microbe 29, 1014–1029 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, J. Y. et al. Enteric viruses ameliorate gut inflammation via Toll-like receptor 3 and Toll-like receptor 7-mediated interferon-beta production. Immunity 44, 889–900 (2016).

    CAS  PubMed  Google Scholar 

  120. Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Uzzan, M. et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat. Med. 28, 766–779 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hand, T. W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Alexander, K. L. et al. Human microbiota flagellins drive adaptive immune responses in Crohn’s disease. Gastroenterology 161, 522–535 (2021).

    CAS  PubMed  Google Scholar 

  124. Pedersen, T. K. et al. The CD4+ T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn’s disease. Immunity 55, 1909–1923 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Martini, G. R. et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell responses in Crohn’s disease. Nat. Med. 29, 2602–2614 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fonseca, D. M. et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163, 354–366 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Czepielewski, R. S. et al. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity 54, 2795–2811 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Carmody, R. N., Varady, K. & Turnbaugh, P. J. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 187, 3857–3876 (2024).

    CAS  PubMed  Google Scholar 

  129. Link, V. M. et al. Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Nat. Med. 30, 560–572 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hashash, J. G., Elkins, J., Lewis, J. D. & Binion, D. G. AGA clinical practice update on diet and nutritional therapies in patients with inflammatory bowel disease: expert review. Gastroenterology 166, 521–532 (2024).

    CAS  PubMed  Google Scholar 

  131. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pereira, G. V. et al. Opposing diet, microbiome, and metabolite mechanisms regulate inflammatory bowel disease in a genetically susceptible host. Cell Host Microbe 32, 527–542 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wegorzewska, M. M. et al. Diet modulates colonic T cell responses by regulating the expression of a Bacteroides thetaiotaomicron antigen. Sci. Immunol. 4, eaau9079 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Lei, C. et al. Bacterial and host fucosylation maintain IgA homeostasis to limit intestinal inflammation in mice. Nat. Microbiol. 10, 126–143 (2025).

    CAS  PubMed  Google Scholar 

  136. Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl Acad. Sci. USA 108, 19030–19035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kamioka, M. et al. Intestinal commensal microbiota and cytokines regulate Fut2+ Paneth cells for gut defense. Proc. Natl Acad. Sci. USA 119, e2115230119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, T. C. et al. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 29, 988–1001 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Paik, D. et al. Human gut bacteria produce TH17-modulating bile acid metabolites. Nature 603, 907–912 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    CAS  PubMed  Google Scholar 

  143. Lee, J. Y. et al. High-fat diet and antibiotics cooperatively impair mitochondrial bioenergetics to trigger dysbiosis that exacerbates pre-inflammatory bowel disease. Cell Host Microbe 28, 273–284 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Culp, E. J., Nelson, N. T., Verdegaal, A. A. & Goodman, A. L. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 187, 6327–6345 (2024).

    CAS  PubMed  Google Scholar 

  145. Sanmarco, L. M. et al. Identification of environmental factors that promote intestinal inflammation. Nature 611, 801–809 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Barnes, E. L., Loftus, E. V. Jr. & Kappelman, M. D. Effects of race and ethnicity on diagnosis and management of inflammatory bowel diseases. Gastroenterology 160, 677–689 (2021).

    PubMed  Google Scholar 

  147. Khalessi, A. et al. Differential manifestations of inflammatory bowel disease based on race and immigration status. Gastro Hep. Adv. 3, 326–332 (2024).

    PubMed  Google Scholar 

  148. Liu, Z. et al. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat. Genet. 55, 796–806 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gettler, K. et al. Common and rare variant prediction and penetrance of IBD in a large, multi-ethnic, health system-based biobank cohort. Gastroenterology 160, 1546–1557 (2021).

    CAS  PubMed  Google Scholar 

  150. Astore, C. et al. The role of admixture in the rare variant contribution to inflammatory bowel disease. Genome Med. 15, 97 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Misra, R., Faiz, O., Munkholm, P., Burisch, J. & Arebi, N. Epidemiology of inflammatory bowel disease in racial and ethnic migrant groups. World J. Gastroenterol. 24, 424–437 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. Damas, O. M. et al. Inflammatory bowel disease is presenting sooner after immigration in more recent US immigrants from Cuba. Aliment. Pharm. Ther. 46, 303–309 (2017).

    CAS  Google Scholar 

  153. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).

    CAS  PubMed  Google Scholar 

  155. Axelrad, J. E., Cadwell, K. H., Colombel, J. F. & Shah, S. C. Systematic review: gastrointestinal infection and incident inflammatory bowel disease. Aliment. Pharm. Ther. 51, 1222–1232 (2020).

    Google Scholar 

  156. Axelrad, J. E. et al. Gastrointestinal infection increases odds of inflammatory bowel disease in a nationwide case–control study. Clin. Gastroenterol. Hepatol. 17, 1311–1322 (2019).

    PubMed  Google Scholar 

  157. Galipeau, H. J. et al. Novel fecal biomarkers that precede clinical diagnosis of ulcerative colitis. Gastroenterology 160, 1532–1545 (2021).

    CAS  PubMed  Google Scholar 

  158. Nandy, A. et al. Epstein–Barr Virus (EBV) exposure precedes cCrohn’s disease development. Gastroenterology https://doi.org/10.1053/j.gastro.2025.01.247 (2025).

  159. Lee, J. C. et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat. Genet. 49, 262–268 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Kugathasan, S. et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet 389, 1710–1718 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    CAS  PubMed  Google Scholar 

  162. Canales-Herrerias, P. et al. Gut-associated lymphoid tissue attrition associates with response to anti-α4β7 therapy in ulcerative colitis. Sci. Immunol. 9, eadg7549 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Canale, V. et al. PTPN2 is a critical regulator of ileal paneth cell viability and function in mice. Cell Mol. Gastroenterol. Hepatol. 16, 39–62 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bamias, G., Menghini, P., Pizarro, T. T. & Cominelli, F. Targeting TL1A and DR3: the new frontier of anti-cytokine therapy in IBD. Gut 74, 652–668 (2024).

  165. Castellanos, J. G. et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity 49, 1077–1089 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Jacob, N. et al. Inflammation-independent TL1A-mediated intestinal fibrosis is dependent on the gut microbiome. Mucosal Immunol. 11, 1466–1476 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Jang, K. K. et al. Tofacitinib uptake by patient-derived intestinal organoids predicts individual clinical responsiveness. Gastroenterology 167, 1453–1456 (2024).

    CAS  PubMed  Google Scholar 

  168. Khan, M. T. et al. Synergy and oxygen adaptation for development of next-generation probiotics. Nature 620, 381–385 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Broadhurst, M. J. et al. IL-22+ CD4+ T cells are associated with therapeutic Trichuris trichiura infection in an ulcerative colitis patient. Sci. Transl. Med. 2, 60ra88 (2010).

    CAS  PubMed  Google Scholar 

  170. Maizels, R. M. Regulation of immunity and allergy by helminth parasites. Allergy 75, 524–534 (2020).

    PubMed  Google Scholar 

  171. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898 (2022).

    CAS  PubMed  Google Scholar 

  172. Furuichi, M. et al. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 633, 878–886 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Talbot, J. et al. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 579, 575–580 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Friedrich, M. et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) grant DK093668 (to K.C.) and the Intramural Research Program of the National Institute of Allergy and Infectious Diseases at the NIH (to P.L.).

Author information

Authors and Affiliations

Authors

Contributions

K.C. and P.L. wrote and edited the manuscript.

Corresponding authors

Correspondence to Ken Cadwell or P’ng Loke.

Ethics declarations

Competing interests

K.C. has received research support from Pfizer, Takeda, Genentech and AbbVie. K.C. has consulted for or received an honorarium from PureTech Health, Genentech and AbbVie. K.C. is an inventor on US patents 10,722,600 and provisional patent 62/935,035 and 63/157,225. P.L. declares no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to this work. Primary Handling Editor: P. Jauregui, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadwell, K., Loke, P. Gene–environment interactions shape the host–microbial interface in inflammatory bowel disease. Nat Immunol 26, 1023–1035 (2025). https://doi.org/10.1038/s41590-025-02197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-025-02197-5

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology