Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of genetic immune disorders on infections including COVID-19, inflammatory bowel disease and cancer

Abstract

Inborn errors of immunity (IEIs) are rare genetic anomalies that cause defective immune function. Over 500 IEIs have been identified to date, affecting millions of patients globally. These IEIs reveal the complex interplay between genetics, the environment and microorganisms that determine immune disease phenotypes. Progress in understanding the molecular and cellular mechanisms of IEIs provides a genetic framework for a functional understanding of the human immune system, disease pathogenesis and successful therapeutic interventions. This Review describes how IEIs impact infectious diseases, particularly coronavirus disease 2019, inflammatory bowel disease and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic causes of T cell deficiencies and associated infectious disease susceptibility.
Fig. 2: Genetic causes of B cell deficiencies and associated infectious disease susceptibility.
Fig. 3: Genetic causes of susceptibility to bacterial, fungal and viral infections.
Fig. 4: Monogenic IBD shares genes with IEI-associated IBD.

Similar content being viewed by others

References

  1. Poli, M. C. et al. Human inborn errors of immunity: 2024 update on the classification from the International Union of Immunological Societies Expert Committee. J. Hum. Immun. 1, e20250003 (2025). This is the most current IUIS Expert Committee classification, the backbone reference for the genetic categories that anchors the entire field.

  2. Bousfiha, A. A. et al. The 2024 update of IUIS phenotypic classification of human inborn errors of immunity. J. Hum. Immun. 1, e20250002 (2025). This 2024 IUIS update provides a comprehensive, expert-curated classification of all known human IEIs, reflecting the latest advances in genetics and immunopathology.

  3. Fischer, A., Provot, J., Jais, J. P., Alcais, A. & Mahlaoui, N. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J. Allergy Clin. Immunol. 140, 1388–1393 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Mortaz, E. et al. Cancers related to immunodeficiencies: update and perspectives. Front. Immunol. 7, 365 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tegtmeyer, D., Seidl, M., Gerner, P., Baumann, U. & Klemann, C. Inflammatory bowel disease caused by primary immunodeficiencies-Clinical presentations, review of literature, and proposal of a rational diagnostic algorithm. Pediatr. Allergy Immunol. 28, 412–429 (2017).

    Article  PubMed  Google Scholar 

  6. Bucciol, G., Delafontaine, S., Meyts, I. & Poli, C. Inborn errors of immunity: a field without frontiers. Immunol. Rev. 322, 15–27 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014). A landmark paper on CTLA4 haploinsufficiency, which fundamentally shifted the understanding of immune dysregulation and autoimmunity in IEIs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cook, S. A. et al. HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 369, 202–207 (2020). A cutting-edge study defining HEM1 deficiency and linking mTORC2 and F-actin control to immunodysregulation.

  9. Walport, M. J. Complement and systemic lupus erythematosus. Arthritis Res. 4, 279–293 (2002).

    Article  Google Scholar 

  10. Toubiana, J. et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 127, 3154–3164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mizoguchi, Y. & Okada, S. Inborn errors of STAT1 immunity. Curr. Opin. Immunol. 72, 59–64 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Lucas, C. L., Chandra, A., Nejentsev, S., Condliffe, A. M. & Okkenhaug, K. PI3Kδ and primary immunodeficiencies. Nat. Rev. Immunol. 16, 702–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Price, S. et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 123, 1989–1999 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stewart, O. et al. Monoallelic expression can govern penetrance of inborn errors of immunity. Nature 637, 1186–1197 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vogan, K. Implementing polygenic risk scores in the clinic. Nat. Genet. 56, 557 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. McLornan, D. P., Pope, J. E., Gotlib, J. & Harrison, C. N. Current and future status of JAK inhibitors. Lancet 398, 803–816 (2021).

    Article  PubMed  Google Scholar 

  17. Rao, V. K. et al. Effective ‘activated PI3Kδ syndrome’–targeted therapy with the PI3Kδ inhibitor leniolisib. Blood 130, 2307–2316 (2017). Proof-of-concept targeted therapy using a PI3Kδ inhibitor in APDS; this translational reference shows how genetic insights can guide treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ozen, A. et al. Evaluating the efficacy and safety of pozelimab in patients with CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy disease: an open-label phase 2 and 3 study. Lancet 403, 645–656 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lo, B. et al. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Polmar, S. H. et al. Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. N. Engl. J. Med. 295, 1337–1343 (1976).

    Article  CAS  PubMed  Google Scholar 

  21. Snowden, J. A. et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant. 57, 1217–1239 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Markert, M. L. et al. Transplantation of thymus tissue in complete DiGeorge syndrome. N. Engl. J. Med. 341, 1180–1189 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Heimall, J. et al. Immune reconstitution and survival of 100 SCID patients post-hematopoietic cell transplant: a PIDTC natural history study. Blood 130, 2718–2727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tangye, S. G. et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 42, 1473–1507 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nguyen, A. T. & Aquino, M. R. Primary antibody deficiencies. Allergy Asthma Proc. 45, 310–316 (2024).

    Article  PubMed  Google Scholar 

  26. Bonilla, F. A. et al. International Consensus Document (ICON): common variable immunodeficiency disorders. J. Allergy Clin. Immunol. Pr. 4, 38–59 (2016).

    Article  Google Scholar 

  27. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kline, A. et al. Outcomes in hematopoetic cell transplantation in the setting of mold infections in patients with chronic granulomatous disease. Bone Marrow Transplant. 60, 191–200 (2024).

  29. Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. 24, 118–141 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Bustamante, J., Boisson-Dupuis, S., Abel, L. & Casanova, J. -L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 26, 454–470 (2014).

  31. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glocker, E.-O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tangye, S. G. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum. Genet. 139, 885–901 (2020).

    Article  PubMed  Google Scholar 

  34. Tangye, S. G. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J. Allergy Clin. Immunol. 151, 818–831 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Drzymalla, E. et al. COVID-19-related health outcomes in people with primary immunodeficiency: a systematic review. Clin. Immunol. 243, 109097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Su, H. C., Jing, H., Zhang, Y. & Casanova, J. L. Interfering with interferons: a critical mechanism for critical COVID-19 pneumonia. Annu. Rev. Immunol. 41, 561–585 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020). Genetic mutations within the IFN-I immunity pathway can put individuals at greater risk for severe COVID-19 pneumonia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Q. et al. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. J. Exp. Med. 219, e20220131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. García-García, A. et al. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J. Exp. Med. 220, e20220170 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Asano, T. et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci. Immunol. 6, eabl4348 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020). This paper reveals autoantibodies against IFN-I as drivers of severe COVID-19—a paradigm-shifting immune mechanism with both genetic and acquired underpinnings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 6, eabl4340 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bastard, P. et al. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci. Immunol. 8, eabp8966 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Bastard, P. et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 218, e20210554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Monk, P. D. et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir. Med. 9, 196–206 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Hung, I. F. et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 395, 1695–1704 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalil, A. C. et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: a double-bind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 9, 1365–1376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brzoska, J., von Eick, H. & Hündgen, M. Interferons in COVID-19: missed opportunities to prove efficacy in clinical phase III trials? Front. Med. 10, 1198576 (2023).

    Article  Google Scholar 

  49. Pazmandi, J., Kalinichenko, A., Ardy, R. C. & Boztug, K. Early‐onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol. Rev. 287, 162–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).

    Article  PubMed  Google Scholar 

  52. Levine, A. et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm. Bowel Dis. 17, 1314–1321 (2011).

    Article  PubMed  Google Scholar 

  53. Uhlig, H. H. et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 147, 990–1007 (2014).

    Article  PubMed  Google Scholar 

  54. Hall, C. H. T. & de Zoeten, E. F. Understanding very early onset inflammatory bowel disease (VEOIBD) in relation to inborn errors of immunity. Immunol. Rev. 322, 329–338 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Glocker, E. -O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009). Seminal paper identifying IL-10 receptor mutations causing infantile-onset IBD, a cornerstone for linking monogenic defects to gut inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Glocker, E. -O. et al. Infant colitis—it’s in the genes. Lancet 376, 1272 (2010).

    Article  PubMed  Google Scholar 

  57. Cleynen, I. et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387, 156–167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ouahed, J. D. Understanding inborn errors of immunity: a lens into the pathophysiology of monogenic inflammatory bowel disease. Front. Immunol. 13, 1026511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nambu, R. et al. A systematic review of monogenic inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 20, e653–e663 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Levine, A. E., Mark, D., Smith, L., Zheng, H. B. & Suskind, D. L. Pharmacologic management of monogenic and very early onset inflammatory bowel diseases. Pharmaceutics 15, 969 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Conrey, P. E. et al. IgA deficiency destabilizes homeostasis toward intestinal microbes and increases systemic immune dysregulation. Sci. Immunol. 8, eade2335 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lane, J. P., Stewart, C. J., Cummings, S. P. & Gennery, A. R. Gut microbiome variations during hematopoietic stem cell transplant in severe combined immunodeficiency. J. Allergy Clin. Immunol. 135, 1654–1656 (2015).

    Article  PubMed  Google Scholar 

  63. Zhang, L., Li, Y. Y., Tang, X. & Zhao, X. Faecal microbial dysbiosis in children with Wiskott–Aldrich syndrome. Scand. J. Immunol. 91, e12805 (2020).

    Article  PubMed  Google Scholar 

  64. Sokol, H. et al. Intestinal dysbiosis in inflammatory bowel disease associated with primary immunodeficiency. J. Allergy Clin. Immunol. 143, 775–778 (2019).

    Article  PubMed  Google Scholar 

  65. Macpherson, M. E. et al. Gut microbiota-dependent trimethylamine N-oxide associates with inflammation in common variable immunodeficiency. Front. Immunol. 11, 574500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jørgensen, S. F. et al. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunol. 9, 1455–1465 (2016).

    Article  PubMed  Google Scholar 

  67. Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Benech, N. & Sokol, H. Targeting the gut microbiota in inflammatory bowel diseases: where are we? Curr. Opin. Microbiol. 74, 102319 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Pai, N. et al. Results of the first pilot randomized controlled trial of fecal microbiota transplant in pediatric ulcerative colitis: lessons, limitations, and future prospects. Gastroenterology 161, 388–393 (2021).

    Article  PubMed  Google Scholar 

  70. Yao, Y. et al. Mucus sialylation determines intestinal host-commensal homeostasis. Cell 185, 1172–1188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tiri, A. et al. Inborn errors of immunity and cancer. Biology 10, 313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Filipovich, A. H., Mathur, A., Kamat, D. & Shapiro, R. S. Primary immunodeficiencies: genetic risk factors for lymphoma. Cancer Res. 52, 5465s–5467s (1992).

    CAS  PubMed  Google Scholar 

  73. Jonkman-Berk, B. M. et al. Primary immunodeficiencies in the Netherlands: national patient data demonstrate the increased risk of malignancy. Clin. Immunol. 156, 154–162 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Kebudi, R., Kiykim, A. & Sahin, M. K. Primary immunodeficiency and cancer in children; a review of the literature. Curr. Pediatr. Rev. 15, 245–250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mayor, P. C. et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J. Allergy Clin. Immunol. 141, 1028–1035 (2018). A study comparing cancer incidence in individuals with primary immunodeficiency diseases from the USIDNET registry to the SEER database found a 1.42-fold increase overall cancer risk.

    Article  PubMed  Google Scholar 

  76. Riaz, I. B., Faridi, W., Patnaik, M. M. & Abraham, R. S. A systematic review on predisposition to lymphoid (B and T cell) neoplasias in patients with primary immunodeficiencies and immune dysregulatory disorders (inborn errors of immunity). Front. Immunol. 10, 777 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vajdic, C. M. et al. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood 116, 1228–1234 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Thaventhiran, J. E. D. et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583, 90–95 (2020). Primary immunodeficiency involves severe infections, autoimmunity and cancer, and a whole-genome sequencing study of 1,318 participants identified genetic mutations, enhancing diagnostic accuracy and understanding of immune pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Rothblum-Oviatt, C. et al. Ataxia telangiectasia: a review. Orphanet J. Rare Dis. 11, 159 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chrzanowska, K. H., Gregorek, H., Dembowska-Bagińska, B., Kalina, M. A. & Digweed, M. Nijmegen breakage syndrome (NBS). Orphanet J. Rare Dis. 7, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sugrañes, T. A. et al. Age of first cancer diagnosis and survival in Bloom syndrome. Genet. Med. 24, 1476–1484 (2022).

    Article  PubMed  Google Scholar 

  83. De Vos, M. et al. PMS2 mutations in childhood cancer. J. Natl Cancer Inst. 98, 358–361 (2006).

    Article  PubMed  Google Scholar 

  84. Bednarski, J. J. & Sleckman, B. P. Lymphocyte development: integration of DNA damage response signaling. Adv. Immunol. 116, 175–204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Germeshausen, M., Ballmaier, M. & Welte, K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 109, 93–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Cohen, J. I. Epstein–Barr virus infection. N. Engl. J. Med. 343, 481–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Frisch, M., Biggar, R. J. & Goedert, J. J.Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J. Natl Cancer Inst. 92, 1500–1510 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Sancho-Shimizu, V. et al. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr. Opin. Allergy Clin. Immunol. 7, 495–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Brianti, P., De Flammineis, E. & Mercuri, S. R. Review of HPV-related diseases and cancers. New Microbiol. 40, 80–85 (2017).

    CAS  PubMed  Google Scholar 

  90. Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat. Genet. 20, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Rigaud, S. et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444, 110–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Kanellopoulou, C. et al. Mg2+ regulation of kinase signaling and immune function. J. Exp. Med. 216, 1828–1842 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ravell, J. C. et al. Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. J. Clin. Invest. 130, 507–522 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Matsuda-Lennikov, M. et al. Magnesium transporter 1 (MAGT1) deficiency causes selective defects in N-linked glycosylation and expression of immune-response genes. J. Biol. Chem. 294, 13638–13656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Izawa, K. et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein–Barr virus infection. J. Exp. Med. 214, 73–89 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rodriguez, R. et al. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein–Barr virus infection of T cells. J. Exp. Med. 216, 2800–2818 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Leiding, J. W. & Holland, S. M. Warts and all: human papillomavirus in primary immunodeficiencies. J. Allergy Clin. Immunol. 130, 1030–1048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    Article  PubMed  Google Scholar 

  99. Menotti, M. et al. Wiskott–Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat. Med. 25, 130–140 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Malinova, D. et al. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts. J. Leukoc. Biol. 99, 699–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Orange, J. S. et al. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc. Natl Acad. Sci. USA 99, 11351–11356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Orange, J. S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 132, 515–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hughes, C. R. et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J. Clin. Invest. 122, 814–820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tran, H. et al. Immunodeficiency-associated lymphomas. Blood Rev. 22, 261–281 (2008).

    Article  PubMed  Google Scholar 

  105. Berglund, L. J. Modulating the PI3K signalling pathway in activated PI3K delta syndrome: a clinical perspective. J. Clin. Immunol. 44, 34 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lévy, R. et al. Efficacy of ruxolitinib in subcutaneous panniculitis-like T-cell lymphoma and hemophagocytic lymphohistiocytosis. Blood Adv. 4, 1383–1387 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Coiffier, B. Rituximab therapy in malignant lymphoma. Oncogene 26, 3603–3613 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020). This review covers the historical and biological development of immnunotherapies, clinical trial outcomes, associated toxicities and future prospects in cancer immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Majzner, R. G., Heitzeneder, S. & Mackall, C. L. Harnessing the immunotherapy revolution for the treatment of childhood cancers. Cancer Cell 31, 476–485 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.Y.P., C.X., S.E.W., M.J.L. and J.C. are supported by the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health. A.O. is supported by the Marmara University, Scientific Research Projects Committee (BAPKO, ADEP program, grant no. 10788).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by C.X., A.Y.P., S.E.W., M.J.L., A.O. and J.C. Figures and tables were created by C.X., A.Y.P., A.O. and J.C. Supervision was carried out by A.O. and J.C. All authors reviewed and/or edited the paper before submission.

Corresponding authors

Correspondence to Ahmet Ozen or Jing Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Holm Uhlig, Evangelos Andreakos, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Laurie A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables 1 and 2

Supplementary Table 1: Categories of IEIs. Supplementary Table 2: Malignancy with IEIs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, C., Park, A.Y., Weber, S.E. et al. The impact of genetic immune disorders on infections including COVID-19, inflammatory bowel disease and cancer. Nat Immunol 26, 1440–1452 (2025). https://doi.org/10.1038/s41590-025-02225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-025-02225-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing