Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of gut microbial metabolites in the T cell lifecycle

Abstract

T cells, a cornerstone of the adaptive immune system, have pivotal roles at the host–microorganism interface. The gut microbiome profoundly influences T cell biology by producing a diverse repertoire of small molecules that are sensed by host cells. These microbial metabolites regulate all aspects of the T cell lifecycle, from cell development to differentiation and activation to exhaustion. Recent studies have uncovered microbially derived molecules, including short-chain fatty acids, secondary bile acids and tryptophan metabolites, as potent regulators of T cell function. However, the full scope of microbial metabolite–T cell interactions remains largely unexplored. This Review presents a mechanistic framework linking gut microbial metabolites to discrete stages of T cell fate and function. Expanding our understanding of these intricate host–microbiome interactions will reveal new aspects of immune regulation and inspire microbiome-guided therapeutic strategies for infections, autoimmune diseases and cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The presence of a microbiome has broad effects on thymic function.
Fig. 2: Microbial metabolites influence T cell differentiation and function through indirect mechanisms involving surrounding cells.
Fig. 3: Microbial metabolites regulate T cell function directly through T cell-intrinsic mechanisms.

Similar content being viewed by others

References

  1. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohnmacht, C. et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ashby, K. M. & Hogquist, K. A. A guide to thymic selection of T cells. Nat. Rev. Immunol. 24, 103–117 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Owen, D. L., Sjaastad, L. E. & Farrar, M. A. Regulatory T cell development in the thymus. J. Immunol. 203, 2031–2041 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Legoux, F. et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366, 494–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Zegarra-Ruiz, D. F. et al. Thymic development of gut-microbiota-specific T cells. Nature 594, 413–417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsuchiya, M. Immunological abnormalities involving the thymus in ulcerative colitis and therapeutic effects of thymectomy. Gastroenterol. Jpn. 19, 232–246 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Mizuno, Y. et al. Inflammatory bowel diseases and thymus disorder: reactivity of thymocytes with monoclonal antibodies. Bull. Tokyo Dent. Coll. 31, 137–141 (1990).

    CAS  PubMed  Google Scholar 

  13. Fredin, M. F. et al. Dextran sulfate sodium‐induced colitis generates a transient thymic involution — impact on thymocyte subsets. Scand. J. Immunol. 65, 421–429 (2007).

    Article  CAS  Google Scholar 

  14. Sasaki, S., Ishida, Y., Nishio, N., Ito, S. & Isobe, K. Thymic involution correlates with severe ulcerative colitis induced by oral administration of dextran sulphate sodium in C57BL/6 mice but not in BALB/c mice. Inflammation 31, 319–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Bealmear, M. & Wilson, R. Histological comparison of the thymus of germfree (axenic) and conventional CFW mice. Anat. Rec. 154, 261–273 (1966).

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, R., Bealmear, M. & Sobonya, R. Growth and regression of the germfree (axenic) thymus. Proc. Soc. Exp. Biol. Med. 118, 97–99 (1965).

    Article  CAS  PubMed  Google Scholar 

  17. van der Waaij, D. The influence of the intestinal microflora on the relative thymus weight. Med. Microbiol. Immunol. 175, 335–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Ennamorati, M. et al. Intestinal microbes influence development of thymic lymphocytes in early life. Proc. Natl Acad. Sci. USA 117, 2570–2578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakajima, A. et al. Commensal bacteria regulate thymic Aire expression. PLoS ONE 9, e105904 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakajima, A. et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 199, 3516–3524 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Eckle, S. B. G. et al. Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J. Biol. Chem. 290, 30204–30211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Article  Google Scholar 

  24. Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ehrlich, A. T. et al. Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Commun. Biol. 1, 102 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colosimo, D. A. et al. Mapping interactions of microbial metabolites with human G-protein-coupled receptors. Cell Host Microbe 26, 273–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Millard, A. L. et al. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin. Exp. Immunol. 130, 245–255 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2013).

    Article  Google Scholar 

  30. Mariño, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2016).

    Article  Google Scholar 

  31. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ridlon, J. M. & Hylemon, P. B. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J. Lipid Res. 53, 66–76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, J. et al. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep. 36, 109726 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, W. et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29, 1366–1377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paik, D. et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 603, 907–912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659–670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, C., Wang, Y., Li, C., Xie, Z. & Dai, L. Amelioration of colitis by a gut bacterial consortium producing anti-inflammatory secondary bile acids. Microbiol. Spectr. 11, e03330-22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghimire, S. et al. Indoxyl 3-sulfate inhibits maturation and activation of human monocyte-derived dendritic cells. Immunobiology 223, 239–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Hezaveh, K. et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 55, 324–340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen, P.-X. et al. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. eBioMedicine 64, 103227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, J. & Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34, 426–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Selma, M. V., Tomás-Barberán, F. A., Beltrán, D., García-Villalba, R. & Espín, J. C. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int. J. Syst. Evol. Microbiol. 64, 2346–2352 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Selma, M. V. et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front. Microbiol. 08, 1521 (2017).

    Article  Google Scholar 

  45. Pidgeon, R. et al. Diet-derived urolithin A is produced by a dehydroxylase encoded by human gut Enterocloster species. Nat. Commun. 16, 999 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, K. et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 136, 501–515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rath, S., Rud, T., Pieper, D. H. & Vital, M. Potential TMA-producing bacteria are ubiquitously found in Mammalia. Front. Microbiol. 10, 2966 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl Acad. Sci. USA 109, 21307–21312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mirji, G. et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 7, eabn0704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18, 91–104 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dyck, L. & Mills, K. H. G. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol. 47, 765–779 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Q. et al. Lactiplantibacillus pentoses CCFM1227 produces desaminotyrosine to protect against influenza virus H1N1 infection through the type I interferon in mice. Nutrients 15, 3659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, J., Han, J., Wei, Y. & Wang, Y. Desaminotyrosine is a redox‐active microbial metabolite that bolsters macrophage antimicrobial functions while attenuating IL‐6 production. FASEB J. 38, e23844 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Joachim, L. et al. The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors. eBioMedicine 97, 104834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, Q. et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity. Cell Metab. 35, 943–960 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, R. et al. Short chain fatty acids facilitate protective immunity by macrophages and T cells during acute fowl adenovirus-4 infection. Sci. Rep. 13, 17999 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Inamoto, T. et al. Short‐chain fatty acids stimulate dendrite elongation in dendritic cells by inhibiting histone deacetylase. FEBS J. 290, 5794–5810 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Föh, B. et al. Microbial metabolite butyrate promotes induction of IL-10+IgM+ plasma cells. PLoS ONE 17, e0266071 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hsu, P. et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J. Immunol. 195, 3665–3674 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Brooks, D. G., Walsh, K. B., Elsaesser, H. & Oldstone, M. B. A. IL-10 directly suppresses CD4 but not CD8 T cell effector and memory responses following acute viral infection. Proc. Natl Acad. Sci. USA 107, 3018–3023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martin-Gallausiaux, C. et al. Butyrate produced by gut commensal bacteria activates TGF-β1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci. Rep. 8, 9742 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M. & Kim, C. H. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145, 396–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Ohta, A. & Sitkovsky, M. Extracellular adenosine-mediated modulation of regulatory T cells. Front. Immunol. 5, 304 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Barrett, E., Ross, R. P., O’Toole, P. W., Fitzgerald, G. F. & Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Otaru, N. et al. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance. Front. Microbiol. 12, 656895 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, H. et al. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177, 1217–1231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pols, T. W. H. et al. Lithocholic acid controls adaptive immune responses by inhibition of TH1 activation through the vitamin D receptor. PLoS ONE 12, e0176715 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Salsinha, A. S., Pimentel, L. L., Fontes, A. L., Gomes, A. M. & Rodríguez-Alcalá, L. M. Microbial production of conjugated linoleic acid and conjugated linolenic acid relies on a multienzymatic system. Microbiol. Mol. Biol. Rev. 82, https://doi.org/10.1128/mmbr.00019-18 (2018).

  78. Song, X. et al. Gut microbial fatty acid isomerization modulates intraepithelial T cells. Nature 619, 837–843 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357, 806–810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dean, J. W. et al. The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8+ T cell differentiation and function. Cell Rep. 42, 111963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Waldecker, M., Kautenburger, T., Daumann, H., Busch, C. & Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. He, Y. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33, 988–1000 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Luu, M. et al. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sun, L., Fu, J. & Zhou, Y. Metabolism controls the balance of TH17/T-regulatory cells. Front. Immunol. 8, 1632 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sanidad, K. Z. et al. Gut bacteria-derived serotonin promotes immune tolerance in early life. Sci. Immunol. 9, eadj4775 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Matsumoto, M. et al. Impact of intestinal microbiota on intestinal luminal metabolome. Sci. Rep. 2, 233 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nakamura, A. et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat. Commun. 12, 2105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Carriche, G. M. et al. Regulating T-cell differentiation through the polyamine spermidine. J. Allergy Clin. Immunol. 147, 335–348 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic–epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Trompette, A. et al. Dietary fiber confers protection against flu by shaping Ly6c patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48, 992–1005 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Qiu, J. et al. Acetate promotes T cell effector function during glucose restriction. Cell Rep. 27, 2063–2074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun, M. et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9, 3555 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Belikov, A. V., Schraven, B. & Simeoni, L. T cells and reactive oxygen species. J. Biomed. Sci. 22, 85 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kamimura, D. & Bevan, M. J. Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J. Immunol. 181, 5433–5441 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Varanasi, S. K. et al. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer. Science 387, 192–201 (2025).

    Article  CAS  PubMed  Google Scholar 

  104. Martin, M. D. & Badovinac, V. P. Defining memory CD8 T cell. Front. Immunol. 9, 2692 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Künzli, M. & Masopust, D. CD4+ T cell memory. Nat. Immunol. 24, 903–914 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jiang, Y., Li, Y. & Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6, e1792 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Östman, S., Rask, C., Wold, A. E., Hultkrantz, S. & Telemo, E. Impaired regulatory T cell function in germ-free mice. Eur. J. Immunol. 36, 2336–2346 (2006).

    Article  PubMed  Google Scholar 

  108. van der Windt, G. J. W. & Pearce, E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249, 27–42 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Balmer, M. L. et al. Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Park, J. S. et al. Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance. Nature 617, 377–385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bender, M. J. et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 186, 1846–1862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Al-Habsi, M. et al. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 378, eabj3510 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Nomura, M. et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw. Open 3, e202895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Jia, D. et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 187, 1651–1665 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 11, 2168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01 DK110559 (J.R.H. and A.S.D.), R35 GM128618 (A.S.D.) and a Harvard Medical School Van Maanen Fellowship (M.T.).

Author information

Authors and Affiliations

Authors

Contributions

M.T., J.R.H. and A.S.D. conceptualized the Review and wrote the manuscript.

Corresponding authors

Correspondence to Jun R. Huh or A. Sloan Devlin.

Ethics declarations

Competing interests

A.S.D. is a consultant for Axial Therapeutics. J.R.H. is a consultant for CJ CheilJedang, hy and Interon Laboratories and an advisor on the Samsung Bio Advisory Board. M.T. declares no competing interests.

Peer review

Peer review information

Nature Immunology thanks Jochen Mattner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Laurie A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, M., Huh, J.R. & Devlin, A.S. The role of gut microbial metabolites in the T cell lifecycle. Nat Immunol 26, 1246–1257 (2025). https://doi.org/10.1038/s41590-025-02227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-025-02227-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology