Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long noncoding RNA regulation of immunity

Abstract

Genes encoding long noncoding RNAs (lncRNAs) are intimately involved in mammalian immunity. Here we review recent knowledge of how lncRNAs regulate immune cell specification and function. Beyond canonical roles in nuclear architecture, chromatin modification and posttranscriptional regulation, lncRNA regulation of metabolic pathways, antigenic extracellular lncRNA ribonucleoprotein complexes and glycosylated noncoding RNAs on the cell surface have emerged as newly recognized regulatory mechanisms. In the immune system, specific lncRNAs control lineage determination during hematopoiesis as well as immune cell activation and function during immune responses, while lncRNA dysregulation is associated with immune-related diseases. In particular, we highlight how a female-specific lncRNA XIST promotes female-biased autoimmunity. Finally, we discuss emerging technologies in high-throughput functional genomics, human genetics, molecular interaction mapping, artificial intelligence and synthetic biology that are accelerating our understanding of lncRNA biology in immunity and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: lncRNA regulatory mechanism in immune cells.
Fig. 2: lncRNA regulatory principles in immunity.
Fig. 3: Dual role of XIST in female-biased autoimmunity.
Fig. 4: Emerging technologies for advancing lncRNA biology.

Similar content being viewed by others

References

  1. Iyer, M. K. et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Kaur, G. et al. GENCODE: massively expanding the lncRNA catalog through capture long-read RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.10.29.620654 (2024).

  3. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Quinn, J. J. et al. Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes Dev. 30, 191–207 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Carlevaro-Fita, J. et al. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Res. 29, 208–222 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Morrison, T. A. et al. Evolving views of long noncoding RNAs and epigenomic control of lymphocyte state and memory. Cold Spring Harb. Perspect. Biol. 14, a037952 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen, Y. G., Satpathy, A. T. & Chang, H. Y. Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol. 18, 962–972 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Peltier, D. C., Roberts, A. & Reddy, P. LNCing RNA to immunity. Trends Immunol. 43, 478–495 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    PubMed  CAS  Google Scholar 

  10. Hacisuleyman, E. et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Lewandowski, J. P. et al. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat. Commun. 10, 5137 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Imamura, K. et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 53, 393–406 (2014).

    PubMed  CAS  Google Scholar 

  13. Azam, S. et al. The early macrophage response to pathogens requires dynamic regulation of the nuclear paraspeckle. Proc. Natl Acad. Sci. USA 121, e2312587121 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Carpenter, S. et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341, 789–792 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Yang, S. et al. WDR82-binding long noncoding RNA lncEry controls mouse erythroid differentiation and maturation. J. Exp. Med. 219, e20211688 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Yang, T., Ou, J. & Yildirim, E. Xist exerts gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Nat. Commun. 13, 4464 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Atianand, M. K. et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165, 1672–1685 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Gomez, J. A. et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152, 743–754 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Kotzin, J. J. et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Wheeler, B. D. et al. The lncRNA Malat1 inhibits miR-15/16 to enhance cytotoxic T cell activation and memory cell formation. Elife 12, RP87900 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Elguindy, M. M. & Mendell, J. T. NORAD-induced Pumilio phase separation is required for genome stability. Nature 595, 303–308 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang, P. et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344, 310–313 (2014).

    PubMed  CAS  Google Scholar 

  23. Huang, D. et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol. 19, 1112–1125 (2018).

    PubMed  CAS  Google Scholar 

  24. Sharma, S. et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc. Natl Acad. Sci. USA 108, 11381–11386 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Rapicavoli, N. A. et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2, e00762 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Wang, P., Xu, J., Wang, Y. & Cao, X. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science 358, 1051–1055 (2017).

    PubMed  CAS  Google Scholar 

  27. Sang, L. et al. Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nat. Metab. 3, 90–106 (2021).

    PubMed  CAS  Google Scholar 

  28. Liu, J. et al. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50, 600–615 (2019).

    PubMed  CAS  Google Scholar 

  29. Shmuel-Galia, L. et al. The lncRNA HOXA11os regulates mitochondrial function in myeloid cells to maintain intestinal homeostasis. Cell Metab. 35, 1441–1456 (2023).

    PubMed  CAS  Google Scholar 

  30. Huang, N. et al. Natural display of nuclear-encoded RNA on the cell surface and its impact on cell interaction. Genome Biol. 21, 225 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Flynn, R. A. et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 184, 3109–3124 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Jiang, X. et al. Small non-coding RNAs encapsulating mammalian cells fuel innate immunity. Preprint at bioRxiv https://doi.org/10.1101/2025.04.07.647669 (2025).

  33. Xie, Y. et al. The modified RNA base acp3U is an attachment site for N-glycans in glycoRNA. Cell 187, 5228–5237 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Targeting a cell surface RNA-binding protein driving acute myeloid leukemia. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02695-9 (2025).

  35. Graziano, V. R. et al. RNA N-glycosylation enables immune evasion and homeostatic efferocytosis. Nature 645, 784–792 (2025).

    PubMed  CAS  Google Scholar 

  36. Zhang, N. et al. Cell surface RNAs control neutrophil recruitment. Cell 187, 846–860 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Núñez-Martínez, H. N. & Recillas-Targa, F. Emerging functions of lncRNA Loci beyond the transcript Itself. Int. J. Mol. Sci. 23, 6258 (2022).

    PubMed  PubMed Central  Google Scholar 

  39. Mowel, W. K. et al. Group 1 innate lymphoid cell lineage identity is determined by a cis-regulatory element marked by a long non-coding RNA. Immunity 47, 435–449 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Isoda, T. et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell 171, 103–119 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Abarrategui, I. & Krangel, M. S. Noncoding transcription controls downstream promoters to regulate T-cell receptor alpha recombination. EMBO J. 26, 4380–4390 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Rothschild, G. et al. Noncoding RNA transcription alters chromosomal topology to promote isotype-specific class switch recombination. Sci. Immunol. 5, eaay5864 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Ruiz-Orera, J., Messeguer, X., Subirana, J. A. & Alba, M. M. Long non-coding RNAs as a source of new peptides. Elife 3, e03523 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Carlevaro-Fita, J., Rahim, A., Guigó, R., Vardy, L. A. & Johnson, R. Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. RNA 22, 867–882 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Tang, S. et al. A lncRNA Dleu2-encoded peptide relieves autoimmunity by facilitating Smad3-mediated Treg induction. EMBO Rep. 25, 1208–1232 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Niu, L. et al. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci. Adv. 6, eaaz2059 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Barczak, W. et al. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat. Commun. 14, 1078 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu, B. et al. Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression. Nat. Immunol. 18, 499–508 (2017).

    PubMed  CAS  Google Scholar 

  50. Zemmour, D., Pratama, A., Loughhead, S. M., Mathis, D. & Benoist, C. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc. Natl Acad. Sci. USA 114, E3472–E3480 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen, Y. et al. lncRNA-GM targets Foxo1 to promote T cell-mediated autoimmunity. Sci. Adv. 8, eabn9181 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Vollmers, A. C. et al. A conserved long noncoding RNA, GAPLINC, modulates the immune response during endotoxic shock. Proc. Natl Acad. Sci. USA 118, e2016648118 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Xu, J. et al. IRF3-binding lncRNA-ISIR strengthens interferon production in viral infection and autoinflammation. Cell Rep. 37, 109926 (2021).

    PubMed  CAS  Google Scholar 

  54. Liu, J. et al. The IRENA lncRNA converts chemotherapy-polarized tumor-suppressing macrophages to tumor-promoting phenotypes in breast cancer. Nat. Cancer 2, 457–473 (2021).

    PubMed  CAS  Google Scholar 

  55. Wang, S. et al. An NF-κB-driven lncRNA orchestrates colitis and circadian clock. Sci. Adv. 6, eabb5202 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Lin, H. et al. The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response. Nat. Immunol. 20, 812–823 (2019).

    PubMed  CAS  Google Scholar 

  57. Jiang, M. et al. Self-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response. Cell 173, 906–919 (2018).

    PubMed  CAS  Google Scholar 

  58. Imam, H., Bano, A. S., Patel, P., Holla, P. & Jameel, S. The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Sci. Rep. 5, 8639 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Chao, T. -C. et al. The long noncoding RNA HEAL regulates HIV-1 replication through epigenetic regulation of the HIV-1 promoter. mBio 10, e02016–e02019 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Cao, Y. et al. An interferon-stimulated long non-coding RNA USP30-AS1 as an immune modulator in influenza A virus infection. PLoS Pathog. 21, e1012854 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Wang, Y. et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc. Natl Acad. Sci. USA 112, E3883–E3892 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Gcanga, L. et al. Host-directed targeting of LincRNA-MIR99AHG suppresses intracellular growth of Mycobacterium tuberculosis. Nucleic Acid Ther. 32, 421–437 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Han, X. et al. LncRNA PTPRE-AS1 modulates M2 macrophage activation and inflammatory diseases by epigenetic promotion of PTPRE. Sci. Adv. 5, eaax9230 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Castellanos-Rubio, A. et al. A long noncoding RNA associated with susceptibility to celiac disease. Science 352, 91–95 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Gonzalez-Moro, I. et al. The T1D-associated lncRNA Lnc13 modulates human pancreatic β cell inflammation by allele-specific stabilization of STAT1 mRNA. Proc. Natl Acad. Sci. USA 117, 9022–9031 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Yang, Z. et al. Promotion of TLR7-MyD88-dependent inflammation and autoimmunity in mice through stem-loop changes in Lnc-Atg16l1. Nat. Commun. 15, 10224 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    PubMed  CAS  Google Scholar 

  68. Yu, B. et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 184, 1790–1803 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Dou, D. R. et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 187, 733–749 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Gartler, S. M. & Riggs, A. D. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17, 155–190 (1983).

    PubMed  CAS  Google Scholar 

  71. Plath, K., Mlynarczyk-Evans, S., Nusinow, D. A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36, 233–278 (2002).

    PubMed  CAS  Google Scholar 

  72. Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    PubMed  CAS  Google Scholar 

  73. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    PubMed  CAS  Google Scholar 

  75. Lau, L. et al. An essential role for TASL in mouse autoimmune pathogenesis and Toll-like receptor signaling. Nat. Commun. 16, 968 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Ricker, E. et al. Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice. Nat. Commun. 12, 4813 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Rubtsov, A. V. et al. CD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCs. J. Immunol. 195, 71–79 (2015).

    PubMed  CAS  Google Scholar 

  80. Zhang, W. et al. Excessive CD11c+Tbet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupus. Proc. Natl Acad. Sci. USA 116, 18550–18560 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Karnell, J. L. et al. Role of CD11c+ T-bet+ B cells in human health and disease. Cell Immunol. 321, 40–45 (2017).

    PubMed  CAS  Google Scholar 

  82. Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Lovell, C. D., Jiwrajka, N., Amerman, H. K., Cancro, M. P. & Anguera, M. C. Xist deletion in B cells results in systemic lupus erythematosus phenotypes. Preprint at bioRxiv https://doi.org/10.1101/2024.05.15.594175 (2024).

  84. Du, Y. et al. Altered X-chromosome inactivation of the TLR7/8 locus and heterogeneity of pDCs in systemic sclerosis. J. Exp. Med. 222, e20231809 (2025).

    PubMed  CAS  Google Scholar 

  85. Brooks, W. H., Satoh, M., Hong, B., Reeves, W. H. & Yang, T. P. Autoantibodies from an SLE patient immunostain the Barr body. Cytogenet. Genome Res. 97, 28–31 (2002).

    PubMed  CAS  Google Scholar 

  86. Hong, B., Reeves, P., Panning, B., Swanson, M. S. & Yang, T. P. Identification of an autoimmune serum containing antibodies against the Barr body. Proc. Natl Acad. Sci. USA 98, 8703–8708 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Crawford, J. D. et al. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI Insight 8, e169344 (2023).

    PubMed  PubMed Central  Google Scholar 

  88. Carter, A. C. et al. Spen links RNA-mediated endogenous retrovirus silencing and X chromosome inactivation. Elife 9, e54508 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Yu, P. et al. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37, 867–879 (2012).

    PubMed  CAS  Google Scholar 

  90. Yan, B. et al. Autoantibody hotspots reveal origin and impact of immunogenic XIST ribonucleoprotein complex. Preprint at bioRxiv https://doi.org/10.1101/2025.01.16.633465 (2025).

  91. Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA 113, E2029–E2038 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Pyfrom, S. et al. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proc. Natl Acad. Sci. USA 118, e2024624118 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Hansen, J. E. et al. Targeting cancer with a lupus autoantibody. Sci. Transl. Med. 4, 157ra142 (2012).

    PubMed  PubMed Central  Google Scholar 

  94. Weisbart, R. H. et al. DNA-dependent targeting of cell nuclei by a lupus autoantibody. Sci. Rep. 5, 12022 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Liu, Y. et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat. Biotechnol. 36, 1203–1210 (2018).

    CAS  Google Scholar 

  96. Wang, Y. et al. Genome-wide gain-of-function screening characterized lncRNA regulators for tumor immune response. Sci. Adv. 8, eadd0005 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Halasz, H. et al. CRISPRi screens identify the lncRNA, LOUP, as a multifunctional locus regulating macrophage differentiation and inflammatory signaling. Proc. Natl Acad. Sci. USA 121, e2322524121 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Liang, W. -W. et al. Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells. Cell 187, 7637–7654 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Montero, J. J. et al. Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx. Nat. Methods 21, 584–596 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. S Zibitt, M., Hartford, C. C. R. & Lal, A. Interrogating lncRNA functions via CRISPR/Cas systems. RNA Biol. 18, 2097–2106 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Pacalin, N. M. et al. Bidirectional epigenetic editing reveals hierarchies in gene regulation. Nat. Biotechnol. 43, 355–368 (2025).

    PubMed  CAS  Google Scholar 

  102. Horlbeck, M. A., Liu, S. J., Chang, H. Y., Lim, D. A. & Weissman, J. S. Fitness effects of CRISPR/Cas9-targeting of long noncoding RNA genes. Nat. Biotechnol. 38, 573–576 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Deng, Y. et al. Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance. Nat. Commun. 13, 4739 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Wagar, L. E. et al. Modeling human adaptive immune responses with tonsil organoids. Nat. Med. 27, 125–135 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Santos, A. J. M. et al. A human autoimmune organoid model reveals IL-7 function in celiac disease. Nature 632, 401–410 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Ang, C. E. et al. The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. eLife 8, e41770 (2019).

    PubMed  PubMed Central  Google Scholar 

  110. Ganesh, V. S. et al. Neurodevelopmental disorder caused by deletion of CHASERR, a lncRNA gene. N. Engl. J. Med. 391, 1511–1518 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Rom, A. et al. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat. Commun. 10, 5092 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. Miolo, G. et al. Identification of a de novo Xq26.2 microduplication encompassing FIRRE gene in a child with intellectual disability. Diagnostics 10, 1009 (2020).

    PubMed  PubMed Central  Google Scholar 

  113. Allou, L. et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 592, 93–98 (2021).

    PubMed  CAS  Google Scholar 

  114. Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Szafranski, P., Gambin, T., Karolak, J. A., Popek, E. & Stankiewicz, P. Lung-specific distant enhancer cis regulates expression of FOXF1 and lncRNA FENDRR. Hum. Mutat. 42, 694–698 (2021).

    PubMed  CAS  Google Scholar 

  116. Andersen, R. E. et al. Chromosomal structural rearrangements implicate long non-coding RNAs in rare germline disorders. Hum. Genet. 143, 921–938 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  117. de Goede, O. M. et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184, 2633–2648 (2021).

    PubMed  PubMed Central  Google Scholar 

  118. Ma, H. et al. A lncRNA from an inflammatory bowel disease risk locus maintains intestinal host-commensal homeostasis. Cell Res. 33, 372–388 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Engreitz, J., Lander, E. S. & Guttman, M. RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol. Biol. 1262, 183–197 (2015).

    PubMed  CAS  Google Scholar 

  122. Tsue, A. F. et al. Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping. Nat. Methods 21, 2058–2071 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Wolin, E. et al. SPIDR enables multiplexed mapping of RNA-protein interactions and uncovers a mechanism for selective translational suppression upon cell stress. Cell 188, 5384–5402.e25 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  124. MAPIT-seq reveals both RBP targets and transcriptome-wide gene expression profiles. Nat. Methods 22, 1768–1769 (2025).

  125. Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments in the nucleus. Cell 184, 5775–5790 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Wen, X. et al. Single-cell multiplex chromatin and RNA interactions in ageing human brain. Nature 628, 648–656 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Zhou, Y. et al. The RNA-binding protein RRP1 brakes macrophage one-carbon metabolism to suppress autoinflammation. Nat. Commun. 16, 6880 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Dodel, M. et al. TREX reveals proteins that bind to specific RNA regions in living cells. Nat. Methods 21, 423–434 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Yi, H. et al. EcDNA-borne PVT1 fusion stabilizes oncogenic mRNAs. Preprint at bioRxiv https://doi.org/10.1101/2025.04.01.646515 (2025).

  130. Brixi, G. et al. Genome modeling and design across all domains of life with Evo 2. Preprint at bioRxiv https://doi.org/10.1101/2025.02.18.638918 (2025).

  131. Chiang, J. -C., Jiang, J., Newburger, P. E. & Lawrence, J. B. Trisomy silencing by XIST normalizes Down syndrome cell pathogenesis demonstrated for hematopoietic defects in vitro. Nat. Commun. 9, 5180 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Gupta, K., Czerminski, J. T. & Lawrence, J. B. Trisomy silencing by XIST: translational prospects and challenges. Hum. Genet 143, 843–855 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Navarro-Cobos, M. J., Morales-Guzman, S. I., Baldry, S. E. L. & Brown, C. J. Derivation of a minimal functional XIST by combining human and mouse interaction domains. Hum. Mol. Genet. 32, 1289–1300 (2023).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Chang and Yu labs for discussions. Supported by Stanford RNA Medicine Program (to H.Y.C.) and Scleroderma Research Foundation (to H.Y.C. and B.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingfei Yu or Howard Y. Chang.

Ethics declarations

Competing interests

H.Y.C. is a cofounder of Accent Therapeutics, Boundless Bio, Cartography Biosciences and Orbital Therapeutics, and was an advisor of 10x Genomics, Arsenal Bio, Chroma Medicine, Exai Bio and Vida Ventures. H.Y.C. is an employee and stockholder of Amgen as of 16 December 2024. B.Y. has no competing interests.

Peer review

Peer review information

Nature Immunology thanks Katherine Fitzgerald, K. Mark Ansel, Xuetao Cao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jamie D. K. Wilson, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Chang, H.Y. Long noncoding RNA regulation of immunity. Nat Immunol 27, 16–25 (2026). https://doi.org/10.1038/s41590-025-02355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-025-02355-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing