Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances and opportunities in RNA structure experimental determination and computational modeling

Abstract

Beyond transferring genetic information, RNAs are molecules with diverse functions that include catalyzing biochemical reactions and regulating gene expression. Most of these activities depend on RNAs’ specific structures. Therefore, accurately determining RNA structure is integral to advancing our understanding of RNA functions. Here, we summarize the state-of-the-art experimental and computational technologies developed to evaluate RNA secondary and tertiary structures. We also highlight how the rapid increase of experimental data facilitates the integrative modeling approaches for better resolving RNA structures. Finally, we provide our thoughts on the latest advances and challenges in RNA structure determination methods, as well as on future directions for both experimental approaches and artificial intelligence-based computational tools to model RNA structure. Ultimately, we hope the technological advances will deepen our understanding of RNA biology and facilitate RNA structure-based biomedical research such as designing specific RNA structures for therapeutics and deploying RNA-targeting small-molecule drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Advances in experimental RNA structure determination.
Fig. 2: The computational methods for RNA secondary structure modeling.
Fig. 3: The computational methods for RNA tertiary structure modeling.
Fig. 4: Integrative computational methods for RNA secondary structure modeling based on experimental probing data.
Fig. 5: Integrative computational methods for RNA tertiary structure modeling based on experimental probing data.

Similar content being viewed by others

References

  1. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pyle, A. M. Ribozymes: a distinct class of metalloenzymes. Science 261, 709–714 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).

    CAS  Google Scholar 

  5. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wan, Y., Kertesz, M., Spitale, R. C., Segal, E. & Chang, H. Y. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12, 641–655 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Ma, H., Jia, X., Zhang, K. & Su, Z. Cryo-EM advances in RNA structure determination. Signal Transduct. Target Ther. 7, 58 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Wan, Y. et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014). This paper presents structure-seq, an in vivo genome-wide RNA structure probing method at nucleotide resolution and illustrates the use of structure-seq to resolve the RNA structurome of Arabidopsis thaliana.

    Article  CAS  PubMed  Google Scholar 

  11. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014). This paper presents DMS-seq, an in vivo genome-wide RNA structure probing method at nucleotide resolution and shows how DMS-seq was used to resolve yeast and human structuromes. The study also found that RNA tends to be more structured in vitro than in vivo.

    Article  CAS  PubMed  Google Scholar 

  12. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015). This paper presents the icSHAPE method and an RNA structurome in mouse cells for all four nucleotides. The paper also reports a correlation between RNA modification and RNA structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beaudoin, J. D. et al. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat. Struct. Mol. Biol. 25, 677–686 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, B. et al. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol. 21, 120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Watts, J. M. et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460, 711–716 (2009). This study characterized the structure of the entire HIV-1 genome at single-nucleotide resolution using SHAPE and the paper reports a correlation between high levels of RNA structure and sequences that encode inter-domain loops in HIV proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438–442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, L. et al. In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell 184, 1865–1883 (2021). This paper reports the in vivo and in vitro structure maps of the SARS-CoV-2 RNA genome, and the study used the obtained RNA structure data to predict host proteins that bind to the SARS-CoV-2 genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuker, M. On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Leamy, K. A., Assmann, S. M., Mathews, D. H. & Bevilacqua, P. C. Bridging the gap between in vitro and in vivo RNA folding. Q. Rev. Biophys. 49, e10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morandi, E. et al. Genome-scale deconvolution of RNA structure ensembles. Nat. Methods 18, 249–252 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, S. H. et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–440 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Z. et al. Cryo-EM structure of human dicer and its complexes with a pre-miRNA substrate. Cell 173, 1191–1203 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Akiyama, B. M. et al. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354, 1148–1152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Incarnato, D., Neri, F., Anselmi, F. & Oliviero, S. Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol. 15, 491 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, P. Y., Sexton, A. N., Culligan, W. J. & Simon, M. D. Carbodiimide reagents for the chemical probing of RNA structure in cells. RNA 25, 135–146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitchell, D. 3rd et al. In vivo RNA structural probing of uracil and guanine base-pairing by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). RNA 25, 147–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deigan, K. E., Li, T. W., Mathews, D. H. & Weeks, K. M. Accurate SHAPE-directed RNA structure determination. Proc. Natl Acad. Sci. USA 106, 97–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-seq). Proc. Natl Acad. Sci. USA 108, 11063–11068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bindewald, E. et al. Correlating SHAPE signatures with three-dimensional RNA structures. RNA 17, 1688–1696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Busan, S., Weidmann, C. A., Sengupta, A. & Weeks, K. M. Guidelines for SHAPE reagent choice and detection strategy for RNA structure probing studies. Biochemistry 58, 2655–2664 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Marinus, T., Fessler, A. B., Ogle, C. A. & Incarnato, D. A novel SHAPE reagent enables the analysis of RNA structure in living cells with unprecedented accuracy. Nucleic Acids Res. 49, e34 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Sexton, A. N., Wang, P. Y., Rutenberg-Schoenberg, M. & Simon, M. D. Interpreting reverse transcriptase termination and mutation events for greater insight into the chemical probing of RNA. Biochemistry 56, 4713–4721 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Ritchey, L. E. et al. Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo. Nucleic Acids Res. 45, e135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Piao, M. et al. An ultra low-input method for global RNA structure probing uncovers Regnase-1-mediated regulation in macrophages. Fundamental Res. 2, 2–13 (2022).

    Article  Google Scholar 

  40. Aw, J. G. A. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat. Biotechnol. 39, 336–346 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Stephenson, W. et al. Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genom. 2, 100097 (2022).

  42. Aw, J. G. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016). This paper presents PARIS, a method based on reversible psoralen crosslinking for global mapping of RNA duplexes with near base-pair resolution in mouse cells. The study discovered many long-range as well as alternative RNA–RNA interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA–RNA interactions. Mol. Cell 62, 618–626 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Ziv, O. et al. COMRADES determines in vivo RNA structures and interactions. Nat. Methods 15, 785–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sugimoto, Y. et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519, 491–494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Metkar, M. et al. Higher-order organization principles of pre-translational mRNPs. Mol. Cell 72, 715–726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, Z. & Chang, H. Y. The RNA base-pairing problem and base-pairing solutions. Cold Spring Harb. Perspect. Biol. 10, a034926 (2018).

  50. Gong, J. et al. RISE: a database of RNA interactome from sequencing experiments. Nucleic Acids Res. 46, D194–D201 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Christy, T. W. et al. Direct mapping of higher-order RNA interactions by SHAPE-JuMP. Biochemistry 60, 1971–1982 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Van Damme, R. et al. Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells. Nat. Commun. 13, 911 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ramani, V., Qiu, R. & Shendure, J. High-throughput determination of RNA structure by proximity ligation. Nat. Biotechnol. 33, 980–984 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nguyen, T. C. et al. Mapping RNA–RNA interactome and RNA structure in vivo by MARIO. Nat. Commun. 7, 12023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cai, Z. et al. RIC-seq for global in situ profiling of RNA–RNA spatial interactions. Nature 582, 432–437 (2020). This paper reports RIC-seq, a technology to profile the transcriptome-wide in intramolecular and intermolecular RNA–RNA interactions mediated by proteins. The study also revealed many RNA-based enhancer and promoter interactions.

    Article  CAS  PubMed  Google Scholar 

  56. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11, 129 (2010). This paper presents RNAstructure, a software package for RNA secondary structure prediction and analysis based on minimum free-energy calculation. RNAstructure can incorporate experimental probing data to improve prediction performance.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Parisien, M. & Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452, 51–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011). This paper presents the ViennaRNA package, a toolkit for RNA secondary structure prediction, comparison and visualization.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lorenz, R., Wolfinger, M. T., Tanzer, A. & Hofacker, I. L. Predicting RNA secondary structures from sequence and probing data. Methods 103, 86–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Simmonds, P. Pervasive RNA secondary structure in the genomes of SARS-CoV-2 and other coronaviruses. mBio 11, e01661-20 (2020).

  61. Kierzek, E. et al. Secondary structure prediction for RNA sequences including N6-methyladenosine. Nat. Commun. 13, 1271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu, Y., Sharma, G. & Mathews, D. H. Dynalign II: common secondary structure prediction for RNA homologs with domain insertions. Nucleic Acids Res. 42, 13939–13948 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rivas, E., Clements, J. & Eddy, S. R. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods 14, 45–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Rivas, E. RNA structure prediction using positive and negative evolutionary information. PLoS Comput. Biol. 16, e1008387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rivas, E., Clements, J. & Eddy, S. R. Estimating the power of sequence covariation for detecting conserved RNA structure. Bioinformatics 36, 3072–3076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rivas, E. Evolutionary conservation of RNA sequence and structure. Wiley Interdiscip. Rev. RNA 12, e1649 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gao, W., Jones, T. A. & Rivas, E. Discovery of 17 conserved structural RNAs in fungi. Nucleic Acids Res. 49, 6128–6143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Manfredonia, I. et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically relevant elements. Nucleic Acids Res. 48, 12436–12452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bernhart, S. H., Hofacker, I. L., Will, S., Gruber, A. R. & Stadler, P. F. RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9, 474 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tan, Z., Fu, Y., Sharma, G. & Mathews, D. H. TurboFold II: RNA structural alignment and secondary structure prediction informed by multiple homologs. Nucleic Acids Res. 45, 11570–11581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zakov, S., Goldberg, Y., Elhadad, M. & Ziv-Ukelson, M. Rich parameterization improves RNA structure prediction. J. Comput. Biol. 18, 1525–1542 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Knudsen, B. & Hein, J. Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31, 3423–3428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Do, C. B., Woods, D. A. & Batzoglou, S. CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22, e90–e98 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Rivas, E., Lang, R. & Eddy, S. R. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more. RNA 18, 193–212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rivas, E. The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective. RNA Biol. 10, 1185–1196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koessler, D. R., Knisley, D. J., Knisley, J. & Haynes, T. A predictive model for secondary RNA structure using graph theory and a neural network. BMC Bioinformatics 11, S21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang, H. et al. A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming. Front. Genet. 10, 467 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang, L. et al. DMfold: a novel method to predict RNA secondary structure with pseudoknots based on deep learning and improved base-pair maximization principle. Front. Genet. 10, 143 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, X., Li, Y., Umarov, R., Gao, X. & Song, L. RNA secondary structure prediction by learning unrolled algorithms. Preprint at https://arxiv.org/abs/2002.05810 (2020).

  81. Fu, L. et al. UFold: fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Res. 50, e14 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Singh, J. et al. Improved RNA secondary structure and tertiary base-pairing prediction using evolutionary profile, mutational coupling and two-dimensional transfer learning. Bioinformatics btab165 (2021).

  84. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun. 12, 941 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Akiyama, M., Sato, K. & Sakakibara, Y. A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model. J. Bioinform. Comput. Biol. 16, 1840025 (2018).

    Article  PubMed  Google Scholar 

  86. Andronescu, M., Condon, A., Hoos, H. H., Mathews, D. H. & Murphy, K. P. Computational approaches for RNA energy parameter estimation. RNA 16, 2304–2318 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sloma, M. F. & Mathews, D. H. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures. RNA 22, 1808–1818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Danaee, P. et al. bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res. 46, 5381–5394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Szikszai, M., Wise, M., Datta, A., Ward, M. & Mathews, D.H. Deep learning models for RNA secondary structure prediction (probably) do not generalise across families. Bioinformatics 38, 3892–3899 (2022).

  90. Puton, T., Kozlowski, L. P., Rother, K. M. & Bujnicki, J. M. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res. 41, 4307–4323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Magnus, M. et al. RNA-Puzzles toolkit: a computational resource of RNA 3D structure benchmark datasets, structure manipulation and evaluation tools. Nucleic Acids Res. 48, 576–588 (2020).

    CAS  PubMed  Google Scholar 

  92. Ding, F. et al. Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 14, 1164–1173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Boniecki, M. J. et al. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 44, e63 (2016). This paper presents SimRNA, a method for computational RNA tertiary structure prediction. SimRNA invents a coarse-grained representation for RNA molecules and integrates an energy function and Monte Carlo sampling for structure prediction.

    Article  PubMed  Google Scholar 

  94. Johnson, P. Z., Kasprzak, W. K., Shapiro, B. A. & Simon, A. E. Structural characterization of a new subclass of panicum mosaic virus-like 3’ cap-independent translation enhancer. Nucleic Acids Res. 50, 1601–1619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Das, R. & Baker, D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl Acad. Sci. USA 104, 14664–14669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Biesiada, M., Pachulska-Wieczorek, K., Adamiak, R. W. & Purzycka, K. J. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 103, 120–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo rosetta prediction of complex global RNA folds. Structure 28, 963–976 (2020). This paper presents FARFAR2, a method for computational RNA tertiary structure prediction based on a fragment assembly strategy and an all-atom scoring function. The RNA structural fragments used by FARFAR2 are collected from a nonredundant crystallographic database.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021). This paper presents ARES, a scoring function to assess RNA tertiary structure. ARES uses geometric deep learning to develop a scoring function based on studying the type and the atomic 3D coordinates of 18 known RNA structures.

    Article  CAS  PubMed  Google Scholar 

  99. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rother, K., Rother, M., Boniecki, M., Puton, T. & Bujnicki, J. M. RNA and protein 3D structure modeling: similarities and differences. J. Mol. Model. 17, 2325–2336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sun, L. et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Res. 31, 495–516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, P., Zhou, X., Xu, K. & Zhang, Q. C. RASP: an atlas of transcriptome-wide RNA secondary structure probing data. Nucleic Acids Res. 49, D183–D191 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, Y. et al. Improved prediction of RNA secondary structure by integrating the free-energy model with restraints derived from experimental probing data. Nucleic Acids Res. 43, 7247–7259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Deng, F., Ledda, M., Vaziri, S. & Aviran, S. Data-directed RNA secondary structure prediction using probabilistic modeling. RNA 22, 1109–1119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, P. et al. Integrative analysis of Zika virus genome RNA structure reveals critical determinants of viral infectivity. Cell Host Microbe 24, 875–886 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Ouyang, Z., Snyder, M. P. & Chang, H. Y. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res. 23, 377–387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, H. & Aviran, S. Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes. Nat. Commun. 9, 606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Spasic, A., Assmann, S. M., Bevilacqua, P. C. & Mathews, D. H. Modeling RNA secondary structure folding ensembles using SHAPE mapping data. Nucleic Acids Res. 46, 314–323 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Homan, P. J. et al. Single-molecule correlated chemical probing of RNA. Proc. Natl Acad. Sci. USA 111, 13858–13863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou, J. et al. IRIS: a method for predicting in vivo RNA secondary structures using PARIS data. Quant. Biol. 8, 369–381 (2020).

    Article  CAS  Google Scholar 

  112. Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kappel, K. et al. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat. Methods 15, 947–954 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bhandari, Y. R. et al. Topological structure determination of RNA using small-angle X-ray scattering. J. Mol. Biol. 429, 3635–3649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-seq. Cell 178, 473–490 e426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Umeyama, T. & Ito, T. DMS-seq for in vivo genome-wide mapping of protein–DNA interactions and nucleosome centers. Cell Rep. 21, 289–300 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, T., Lyu, R., You, Q. & He, C. Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat. Methods 17, 515–523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Jerkovic, I. & Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22, 511–528 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants nos. 32125007 and 91940306 to Q.C.Z., and 32100504 to Y.F.), the Postdoctoral Science Foundation of China (2021M691811 to Y.F., and 2021M690091 and 2021T140380 to L.S.) and the Postdoctoral Foundation of Tsinghua-Peking Center for Life Sciences (J.Z., Y.F. and L.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Sun or Qiangfeng Cliff Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Lei Tang, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Fei, Y., Sun, L. et al. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat Methods 19, 1193–1207 (2022). https://doi.org/10.1038/s41592-022-01623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-022-01623-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing