As long-read sequencing technologies continue to advance, the possibility of obtaining maps of DNA and RNA modifications at single-molecule resolution has become a reality. Here we highlight the opportunities and challenges posed by the use of long-read sequencing technologies to study epigenetic and epitranscriptomic marks and how this will affect the way in which we approach the study of health and disease states.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Comprehensive mapping of RNA modification dynamics and crosstalk via deep learning and nanopore direct RNA-sequencing
Nature Communications Open Access 14 January 2026
-
De novo basecalling of RNA modifications at single molecule and nucleotide resolution
Genome Biology Open Access 25 February 2025
-
Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies
Molecular Cancer Open Access 14 February 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


References
Sood, A. J., Viner, C. & Hoffman, M. M. J. Cheminformatics 11, 30 (2019).
Fedoriw, A., Mugford, J. & Magnuson, T. Cold Spring Harb. Perspect. Biol. 4, a008136 (2012).
Boccaletto, P. & Bagiński, B. in RNA Bioinformatics. Methods in Molecular Biology vol. 2283 (ed. Picardi, E.) 481–505 (Humana, 2021).
Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Cell 169, 1187–1200 (2017).
Perez, M. F. & Lehner, B. Nat. Cell Biol. 21, 143–151 (2019).
Jonkhout, N. et al. RNA 23, 1754–1769 (2017).
Esteller, M. Nat. Rev. Genet. 8, 286–298 (2007).
Lister, R. et al. Nature 462, 315–322 (2009).
Schaefer, M., Pollex, T., Hanna, K. & Lyko, F. Nucleic Acids Res. 37, e12 (2009).
Meyer, K. D. et al. Cell 149, 1635–1646 (2012).
Dominissini, D. et al. Nature 485, 201–206 (2012).
Safra, M. et al. Nature 551, 251–255 (2017).
Li, X. et al. Nat. Chem. Biol. 12, 311–316 (2016).
Schwartz, S. & Motorin, Y. RNA Biol. 14, 1124–1137 (2017).
Anreiter, I., Mir, Q., Simpson, J. T., Janga, S. C. & Soller, M. Trends Biotechnol. 39, 72–89 (2021).
Novoa, E. M., Mason, C. E. & Mattick, J. S. Nat. Rev. Mol. Cell Biol. 18, 339–340 (2017).
Eid, J. et al. Science 323, 133–138 (2009).
Vilfan, I. D. et al. J. Nanobiotechnology 11, 8 (2013).
Garalde, D. R. et al. Nat. Methods 15, 201–206 (2018).
Aw, J. G. A. et al. Nat. Biotechnol. 39, 336–346 (2021).
Drexler, H. L., Choquet, K. & Churchman, L. S. Mol. Cell 77, 985–998.e8 (2020).
Müller, C. A. et al. Nat. Methods 16, 429–436 (2019).
Furlan, M. et al. RNA Biol. 18 (Suppl. 1), 31–40 (2021).
Maier, K. C., Gressel, S., Cramer, P. & Schwalb, B. Genome Res. 30, 1332–1344 (2020).
Teng, H. et al. Gigascience 8, giz049 (2019).
Pryszcz, L. P. & Novoa, E. M. Bioinformatics 38, 257–260 (2022).
Alfonzo, J. D. et al. Nat. Genet. 53, 1113–1116 (2021).
Begik, O., Mattick, J. S. & Novoa, E. M. RNA 28, 1430–1439 (2022).
Smith, M. A. et al. Genome Res. 30, 1345–1353 (2020).
Andries, O. et al. J. Control. Release 217, 337–344 (2015).
Fleming, A. M. & Burrows, C. J. Preprint at bioRxiv https://doi.org/10.1101/2022.06.03.494690 (2022).
Beaulaurier, J., Schadt, E. E. & Fang, G. Nat. Rev. Genet. 20, 157–172 (2019).
Liu, H. et al. Nat. Commun. 10, 4079 (2019).
Acknowledgements
M.C.L. is supported by an FPI Severo-Ochoa fellowship from the Spanish Ministry of Economy, Industry, and Competitiveness (MEIC). This work was supported by funds from MEIC (PID2021-128193NB-100 to E.M.N.) and the European Research Council (ERC-StG-2021 No 101042103 to E.M.N.). We acknowledge the support of the MEIC to the EMBL partnership, Centro de Excelencia Severo Ochoa, and CERCA Programme/Generalitat de Catalunya.
Author information
Authors and Affiliations
Contributions
M.C.L. and E.M.N. cowrote the manuscript. M.C.L. composed the figures.
Corresponding author
Ethics declarations
Competing interests
E.M.N. has received travel and accommodation expenses to speak at Oxford Nanopore Technologies conferences, and is a member of the Scientific Advisory Board of IMMAGINA Biotech. M.C.L. has received an Oxford Nanopore Technologies travel bursary.
Rights and permissions
About this article
Cite this article
Lucas, M.C., Novoa, E.M. Long-read sequencing in the era of epigenomics and epitranscriptomics. Nat Methods 20, 25–29 (2023). https://doi.org/10.1038/s41592-022-01724-8
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41592-022-01724-8
This article is cited by
-
Comprehensive mapping of RNA modification dynamics and crosstalk via deep learning and nanopore direct RNA-sequencing
Nature Communications (2026)
-
The new era of single-molecule RNA modification detection through nanopore base-calling models
Nature Reviews Molecular Cell Biology (2026)
-
Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies
Molecular Cancer (2025)
-
De novo basecalling of RNA modifications at single molecule and nucleotide resolution
Genome Biology (2025)
-
Elucidating the coordination of RNA processing using short-read and long-read RNA-sequencing methods
Nature Reviews Molecular Cell Biology (2025)