Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Long-read sequencing in the era of epigenomics and epitranscriptomics

As long-read sequencing technologies continue to advance, the possibility of obtaining maps of DNA and RNA modifications at single-molecule resolution has become a reality. Here we highlight the opportunities and challenges posed by the use of long-read sequencing technologies to study epigenetic and epitranscriptomic marks and how this will affect the way in which we approach the study of health and disease states.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: List of DNA and RNA modifications, and sequencing-based methods used to detect them.
Fig. 2: Overview of methods for detecting DNA and RNA modifications using long-read sequencing.

References

  1. Sood, A. J., Viner, C. & Hoffman, M. M. J. Cheminformatics 11, 30 (2019).

    Article  Google Scholar 

  2. Fedoriw, A., Mugford, J. & Magnuson, T. Cold Spring Harb. Perspect. Biol. 4, a008136 (2012).

    Article  Google Scholar 

  3. Boccaletto, P. & Bagiński, B. in RNA Bioinformatics. Methods in Molecular Biology vol. 2283 (ed. Picardi, E.) 481–505 (Humana, 2021).

  4. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Cell 169, 1187–1200 (2017).

    Article  CAS  Google Scholar 

  5. Perez, M. F. & Lehner, B. Nat. Cell Biol. 21, 143–151 (2019).

    Article  CAS  Google Scholar 

  6. Jonkhout, N. et al. RNA 23, 1754–1769 (2017).

    Article  CAS  Google Scholar 

  7. Esteller, M. Nat. Rev. Genet. 8, 286–298 (2007).

    Article  CAS  Google Scholar 

  8. Lister, R. et al. Nature 462, 315–322 (2009).

    Article  CAS  Google Scholar 

  9. Schaefer, M., Pollex, T., Hanna, K. & Lyko, F. Nucleic Acids Res. 37, e12 (2009).

    Article  Google Scholar 

  10. Meyer, K. D. et al. Cell 149, 1635–1646 (2012).

    Article  CAS  Google Scholar 

  11. Dominissini, D. et al. Nature 485, 201–206 (2012).

    Article  CAS  Google Scholar 

  12. Safra, M. et al. Nature 551, 251–255 (2017).

    Article  CAS  Google Scholar 

  13. Li, X. et al. Nat. Chem. Biol. 12, 311–316 (2016).

    Article  CAS  Google Scholar 

  14. Schwartz, S. & Motorin, Y. RNA Biol. 14, 1124–1137 (2017).

    Article  Google Scholar 

  15. Anreiter, I., Mir, Q., Simpson, J. T., Janga, S. C. & Soller, M. Trends Biotechnol. 39, 72–89 (2021).

    Article  CAS  Google Scholar 

  16. Novoa, E. M., Mason, C. E. & Mattick, J. S. Nat. Rev. Mol. Cell Biol. 18, 339–340 (2017).

    Article  CAS  Google Scholar 

  17. Eid, J. et al. Science 323, 133–138 (2009).

    Article  CAS  Google Scholar 

  18. Vilfan, I. D. et al. J. Nanobiotechnology 11, 8 (2013).

    Article  CAS  Google Scholar 

  19. Garalde, D. R. et al. Nat. Methods 15, 201–206 (2018).

    Article  CAS  Google Scholar 

  20. Aw, J. G. A. et al. Nat. Biotechnol. 39, 336–346 (2021).

    Article  CAS  Google Scholar 

  21. Drexler, H. L., Choquet, K. & Churchman, L. S. Mol. Cell 77, 985–998.e8 (2020).

    Article  CAS  Google Scholar 

  22. Müller, C. A. et al. Nat. Methods 16, 429–436 (2019).

    Article  Google Scholar 

  23. Furlan, M. et al. RNA Biol. 18 (Suppl. 1), 31–40 (2021).

    Article  CAS  Google Scholar 

  24. Maier, K. C., Gressel, S., Cramer, P. & Schwalb, B. Genome Res. 30, 1332–1344 (2020).

    Article  CAS  Google Scholar 

  25. Teng, H. et al. Gigascience 8, giz049 (2019).

    Article  Google Scholar 

  26. Pryszcz, L. P. & Novoa, E. M. Bioinformatics 38, 257–260 (2022).

    Article  CAS  Google Scholar 

  27. Alfonzo, J. D. et al. Nat. Genet. 53, 1113–1116 (2021).

    Article  CAS  Google Scholar 

  28. Begik, O., Mattick, J. S. & Novoa, E. M. RNA 28, 1430–1439 (2022).

    Google Scholar 

  29. Smith, M. A. et al. Genome Res. 30, 1345–1353 (2020).

    Article  CAS  Google Scholar 

  30. Andries, O. et al. J. Control. Release 217, 337–344 (2015).

    Article  CAS  Google Scholar 

  31. Fleming, A. M. & Burrows, C. J. Preprint at bioRxiv https://doi.org/10.1101/2022.06.03.494690 (2022).

  32. Beaulaurier, J., Schadt, E. E. & Fang, G. Nat. Rev. Genet. 20, 157–172 (2019).

    Article  CAS  Google Scholar 

  33. Liu, H. et al. Nat. Commun. 10, 4079 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

M.C.L. is supported by an FPI Severo-Ochoa fellowship from the Spanish Ministry of Economy, Industry, and Competitiveness (MEIC). This work was supported by funds from MEIC (PID2021-128193NB-100 to E.M.N.) and the European Research Council (ERC-StG-2021 No 101042103 to E.M.N.). We acknowledge the support of the MEIC to the EMBL partnership, Centro de Excelencia Severo Ochoa, and CERCA Programme/Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Contributions

M.C.L. and E.M.N. cowrote the manuscript. M.C.L. composed the figures.

Corresponding author

Correspondence to Eva Maria Novoa.

Ethics declarations

Competing interests

E.M.N. has received travel and accommodation expenses to speak at Oxford Nanopore Technologies conferences, and is a member of the Scientific Advisory Board of IMMAGINA Biotech. M.C.L. has received an Oxford Nanopore Technologies travel bursary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, M.C., Novoa, E.M. Long-read sequencing in the era of epigenomics and epitranscriptomics. Nat Methods 20, 25–29 (2023). https://doi.org/10.1038/s41592-022-01724-8

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-022-01724-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research