Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology

Abstract

Cryogenic electron microscopy and data processing enable the determination of structures of isolated macromolecules to near-atomic resolution. However, these data do not provide structural information in the cellular environment where macromolecules perform their native functions, and vital molecular interactions can be lost during the isolation process. Cryogenic focused ion beam (FIB) fabrication generates thin lamellae of cellular samples and tissues, enabling structural studies on the near-native cellular interior and its surroundings by cryogenic electron tomography (cryo-ET). Cellular cryo-ET benefits from the technological developments in electron microscopes, detectors and data processing, and more in situ structures are being obtained and at increasingly higher resolution. In this Review, we discuss recent studies employing cryo-ET on FIB-generated lamellae and the technological developments in ultrarapid sample freezing, FIB fabrication of lamellae, tomography, data processing and correlative light and electron microscopy that have enabled these studies. Finally, we explore the future of cryo-ET in terms of both methods development and biological application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of vitreous cryogenic sectioning and FIB fabrication of lamellae.
Fig. 2: Examples of structures obtained within cells with cryo-ET on FIB-fabricated lamellae and subsequent subtomogram averaging.
Fig. 3: Three examples of distinct applications of CLEM for cryo-ET on FIB-fabricated lamellae.

Similar content being viewed by others

References

  1. Kuhlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    PubMed  Google Scholar 

  2. Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).

    CAS  PubMed  Google Scholar 

  4. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    CAS  PubMed  Google Scholar 

  5. Medalia, O. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002).

    CAS  PubMed  Google Scholar 

  6. Dobro, M. J. et al. Uncharacterized bacterial structures revealed by electron cryotomography. J. Bacteriol. 199, 1–14 (2017).

    Google Scholar 

  7. Walz, J. et al. Tricorn protease exists as an icosahedral supermolecule in vivo. Mol. Cell 1, 59–65 (1997).

    CAS  PubMed  Google Scholar 

  8. Wan, W. & Briggs, J. A. G. Cryo-electron tomography and subtomogram averaging. Methods Enzymol. 579, 329–367 (2016).

    CAS  PubMed  Google Scholar 

  9. McDowall, A. W. et al. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131, 1–9 (1983).

    CAS  PubMed  Google Scholar 

  10. Al-Amoudi, A., Norlen, L. P. O. & Dubochet, J. Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148, 131–135 (2004).

    CAS  PubMed  Google Scholar 

  11. Pierson, J., Ziese, U., Sani, M. & Peters, P. J. Exploring vitreous cryo-section-induced compression at the macromolecular level using electron cryo-tomography; 80S yeast ribosomes appear unaffected. J. Struct. Biol. 173, 345–349 (2011).

    CAS  PubMed  Google Scholar 

  12. Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods 4, 215–217 (2007). Key study in the development of cryo-FIB lamellae preparation on biological samples.

    CAS  PubMed  Google Scholar 

  13. Rigort, A. et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl Acad. Sci. USA 109, 4449–4454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaffer, M. et al. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol. 197, 73–82 (2017).

    CAS  PubMed  Google Scholar 

  15. Wagner, F. R. et al. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15, 2041–2070 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Marko, M. et al. Focused ion beam (FIB) preparation methods for 3-D biological cryo-TEM. Microsc. Microanal. 12, 98–99 (2006).

    Google Scholar 

  17. Basgall, E. & Nicastro, D. Cryo-focused ion beam preparation of biological materials for retrieval and examination by cryo-TEM. Microsc. Microanal. 12, 1132–1133 (2006).

    Google Scholar 

  18. Hayles, M. F., Stokes, D. J., Phifer, D. & Findlay, K. C. A technique for improved focused ion beam milling of cryo-prepared life science specimens. J. Microsc. 226, 263–269 (2007).

    CAS  PubMed  Google Scholar 

  19. Marko, M., Hsieh, C., Moberlychan, W., Mannella, C. A. & Frank, J. Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J. Microsc. 222, 42–47 (2006).

    CAS  PubMed  Google Scholar 

  20. Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016). Early biological study demonstrating subtomogram averaging on FIB lamellae.

    CAS  PubMed  Google Scholar 

  21. Hagen, C. et al. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163, 1692–1701 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bykov, Y. S. et al. The structure of the COPI coat determined within the cell. eLife 6, e32493 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Dodonova, S. O. et al. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349, 195–198 (2015).

    CAS  PubMed  Google Scholar 

  24. Laughlin, T. G. et al. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. Nature 608, 429–435 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfeffer, S. et al. Dissecting the molecular organization of the translocon-associated protein complex. Nat. Commun. 8, 14516 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, X. et al. A mammalian system for high-resolution imaging of intact cells by cryo-electron tomography. Prog. Biophys. Mol. Biol. 160, 87–96 (2021).

    CAS  PubMed  Google Scholar 

  27. Kovtun, O. et al. Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 561, 561–564 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mosalaganti, S. et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 376, eabm9506 (2022).

    CAS  PubMed  Google Scholar 

  29. Mosalaganti, S. et al. In situ architecture of the algal nuclear pore complex. Nat. Commun. 9, 2361 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Allegretti, M. et al. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 586, 796–800 (2020).

    CAS  PubMed  Google Scholar 

  31. Zhao, Y. et al. 3D structure and in situ arrangements of CatSper channel in the sperm flagellum. Nat. Commun. 13, 3439 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Klena, N. et al. Architecture of the centriole cartwheel‐containing region revealed by cryo‐electron tomography. EMBO J. 39, e106246 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Klein, S. et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 11, 5885 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Berger, C. et al. Structure of the Yersinia injectisome in intracellular host cell phagosomes revealed by cryo FIB electron tomography. J. Struct. Biol. 213, 107701 (2021).

    CAS  PubMed  Google Scholar 

  35. Berger, C. et al. Plasma FIB milling for the determination of structures in situ. Nat. Commun. 14, 629 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sutton, G. et al. Assembly intermediates of orthoreovirus captured in the cell. Nat. Commun. 11, 4445 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Z. et al. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell 184, 2135–2150.e13 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Z. et al. Structures from intact myofibrils reveal mechanism of thin filament regulation through nebulin. Science 375, 1612–1627 (2022). High-resolution in situ structures obtained on FIB lamellae, showing structural differences with structures obtained on isolated proteins.

    Google Scholar 

  39. Weiss, G. L., Kieninger, A.-K., Maldener, I., Forchhammer, K. & Pilhofer, M. Structure and function of a bacterial gap junction analog. Cell 178, 374–384.e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolff, G. et al. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369, 1395–1398 (2020). Timely study on the structural characterisation of a molecular pore formed by coronaviruses, which were not previously structurally characterized.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, H. et al. In situ structure of intestinal apical surface reveals nanobristles on microvilli. Proc. Natl Acad. Sci. USA 119, e2122249119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Klein, S. et al. Post-correlation on-lamella cryo-CLEM reveals the membrane architecture of lamellar bodies. Commun. Biol. 4, 137 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nickell, S., Kofler, C., Leis, A. P. & Baumeister, W. A visual approach to proteomics. Nat. Rev. Mol. Cell Biol. 7, 225–230 (2006).

    CAS  PubMed  Google Scholar 

  44. Albert, S. et al. Proteasomes tether to two distinct sites at the nuclear pore complex. Proc. Natl Acad. Sci. USA 114, 13726–13731 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Albert, S. et al. Direct visualization of degradation microcompartments at the ER membrane. Proc. Natl Acad. Sci. USA 117, 1069–1080 (2020).

    CAS  PubMed  Google Scholar 

  46. Guo, Q. et al. In situ structure of neuronal C9ORF72 poly-GA aggregates reveals proteasome recruitment. Cell 172, 696–705 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoffman, D. P. et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367, eaaz5357 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Collado, J. et al. Tricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrity. Dev. Cell 51, 476–487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Khanna, K. et al. The molecular architecture of engulfment during Bacillus subtilis sporulation. eLife 8, e45257 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Böck, D. et al. In situ architecture, function, and evolution of a contractile injection system. Science 717, 713–717 (2017).

    Google Scholar 

  51. Bäuerlein, F. J. B. et al. In situ architecture and cellular interactions of PolyQ inclusions. Cell 171, 179–187.e10 (2017).

    PubMed  Google Scholar 

  52. Gruber, A. et al. Molecular and structural architecture of polyQ aggregates in yeast. Proc. Natl Acad. Sci. USA 115, 201717978 (2018).

    Google Scholar 

  53. Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chaikeeratisak, V. et al. Viral capsid trafficking along treadmilling tubulin filaments in bacteria. Cell 177, 1771–1780.e12 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Toro-Nahuelpan, M. et al. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat. Methods 17, 50–54 (2020).

    CAS  PubMed  Google Scholar 

  56. Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984).

    CAS  PubMed  Google Scholar 

  57. Frederik, P. M. & Hubert, D. H. W. Cryoelectron microscopy of liposomes. Methods Enzymol. 391, 431–448 (2005).

    PubMed  Google Scholar 

  58. Iancu, C. V. et al. Electron cryotomography sample preparation using the Vitrobot. Nat. Protoc. 1, 2813–2819 (2006).

    CAS  PubMed  Google Scholar 

  59. Bäuerlein, F. J. B., Pastor-Pareja, J. C. & Fernández-Busnadiego, R. Cryo-electron tomography of native Drosophila tissues vitrified by plunge freezing. Preprint at bioRxiv https://doi.org/10.1101/2021.04.14.437159 (2021).

  60. Burstein, N. L., & Maurice, D. M. Cryofixation of tissue surfaces by a propane jet for electron microscopy. Micron 9, 191–198 (1978).

    Google Scholar 

  61. Ravelli, R. B. G. et al. Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification. Nat. Commun. 11, 2563 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Escaig, J. New instruments which facilitate rapid freezing at 83K and 6K. J. Microsc. 126, 221–229 (1982).

    Google Scholar 

  63. Porta, D. & López-Iglesias, C. A comparison of cryo- versus chemical fixation in the soil green algae Jaagiella. Tissue Cell 30, 368–376 (1998).

    CAS  PubMed  Google Scholar 

  64. Moor, H., Bellin, G., Sandri, C. & Akert, K. The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res. 209, 201–216 (1980).

    CAS  PubMed  Google Scholar 

  65. Harapin, J. et al. Structural analysis of multicellular organisms with cryo-electron tomography. Nat. Methods 12, 634–636 (2015).

    CAS  PubMed  Google Scholar 

  66. Kelley, K. et al. Waffle method: a general and flexible approach for improving throughput in FIB-milling. Nat. Commun. 13, 1857 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, J. et al. VHUT-cryo-FIB, a method to fabricate frozen hydrated lamellae from tissue specimens for in situ cryo-electron tomography. J. Struct. Biol. 213, 107763 (2021).

    CAS  PubMed  Google Scholar 

  68. Shorubalko, I., Choi, K., Stiefel, M. & Park, H. G. Ion beam profiling from the interaction with a freestanding 2D layer. Beilstein J. Nanotechnol. 8, 682–687 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wolff, G. et al. Mind the gap: micro-expansion joints drastically decrease the bending of FIB-milled cryo-lamellae. J. Struct. Biol. 208, 107389 (2019).

    PubMed  Google Scholar 

  70. Medeiros, J. M. et al. Robust workflow and instrumentation for cryo-focused ion beam milling of samples for electron cryotomography. Ultramicroscopy 190, 1–11 (2018).

    CAS  PubMed  Google Scholar 

  71. Klumpe, S. et al. A modular platform for automated cryo-FIB workflows. eLife 10, e70506 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorelick, S., Dierickx, D., Buckley, G., Whisstock, J. & Marco, A. Assembly and imaging set up of PIE-Scope. Bio Protoc. 10, e3768 (2020).

    PubMed  PubMed Central  Google Scholar 

  73. Tacke, S. et al. A streamlined workflow for automated cryo focused ion beam milling. J. Struct. Biol. 213, 107743 (2021). An implementation of automated lamella fabrication, and important improvements on the FIB/SEM microscope to minimize ice growth on lamellae.

    CAS  PubMed  Google Scholar 

  74. Rubino, S. et al. A site-specific focused-ion-beam lift-out method for cryo transmission electron microscopy. J. Struct. Biol. 180, 572–576 (2012).

    PubMed  Google Scholar 

  75. Mahamid, J. et al. A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. J. Struct. Biol. 192, 262–269 (2015).

    CAS  PubMed  Google Scholar 

  76. Parmenter, C. D. & Nizamudeen, Z. A. Cryo-FIB-lift-out: practically impossible to practical reality. J. Microsc. 281, 157–174 (2021).

    CAS  PubMed  Google Scholar 

  77. De Winter, D. A. M., Hsieh, C., Marko, M. & Hayles, M. F. Cryo-FIB preparation of whole cells and tissue for cryo-TEM: use of high-pressure frozen specimens in tubes and planchets. J. Microsc. 281, 125–137 (2021).

    PubMed  Google Scholar 

  78. Schaffer, M. et al. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat. Methods 16, 757–762 (2019). Demonstration of the lift-out technique on small organisms using a cryo-gripper, resulting in lamellae with sufficient quality for subtomogram averaging of ribosomes.

    CAS  PubMed  Google Scholar 

  79. Fuest, M. et al. In situ microfluidic cryofixation for cryo focused ion beam milling and cryo electron tomography. Sci. Rep. 9, 19133 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rigort, A. et al. Micromachining tools and correlative approaches for cellular cryo-electron tomography. J. Struct. Biol. 172, 169–179 (2010).

    PubMed  Google Scholar 

  81. Gorelick, S. et al. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. eLife 8, e45919 (2019). Integration of a fluorescence microscope in a cryo-FIB/SEM microscope for CLEM.

    PubMed  PubMed Central  Google Scholar 

  82. Burnett, T. L. et al. Large volume serial section tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy 161, 119–129 (2016).

    CAS  PubMed  Google Scholar 

  83. Liu, J. et al. Effect of ion irradiation introduced by focused ion-beam milling on the mechanical behaviour of sub-micron-sized samples. Sci. Rep. 10, 10324 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Grigorieff, N. Direct detection pays off for electron cryo-microscopy. eLife 2, 2–4 (2013).

    Google Scholar 

  85. Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl Acad. Sci. USA 111, 15635–15640 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Turoňová, B. et al. Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nat. Commun. 11, 876 (2020).

    PubMed  PubMed Central  Google Scholar 

  87. Schwartz, O. et al. Laser phase plate for transmission electron microscopy. Nat. Methods 16, 1016–1020 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017). Implementation of a dose-symmetric tilt scheme, which has rapidly become the standard for cryo-electron tomography.

    PubMed  PubMed Central  Google Scholar 

  89. Chreifi, G., Chen, S., Metskas, L. A., Kaplan, M. & Jensen, G. J. Rapid tilt-series acquisition for electron cryotomography. J. Struct. Biol. 205, 163–169 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Eisenstein, F., Danev, R. & Pilhofer, M. Improved applicability and robustness of fast cryo-electron tomography data acquisition. J. Struct. Biol. 208, 107–114 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Eisenstein, F. et al. Parallel cryo electron tomography on in situ lamellae. Nat. Methods 20, 131–138 (2023).

    CAS  PubMed  Google Scholar 

  92. Yang, J. E. et al. Correlative cryogenic montage electron tomography for comprehensive in-situ whole-cell structural studies. Preprint at bioRxiv https://doi.org/10.1101/2021.12.31.474669 (2022).

  93. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bharat, T. A. M. & Scheres, S. H. W. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protoc. 11, 2054–2065 (2016). Reliable software for cryo-EM data processing, which has increasingly become more suitable for subtomogram averaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fernández, J. J., Li, S. & Crowther, R. A. CTF determination and correction in electron cryotomography. Ultramicroscopy 106, 587–596 (2006).

    PubMed  Google Scholar 

  96. Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017). IMOD has been an invaluable tool for tomogram reconstructions and visualization for many years.

    PubMed  Google Scholar 

  97. Turoňová, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å. J. Struct. Biol. 199, 187–195 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Kunz, M. & Frangakis, A. S. Three-dimensional CTF correction improves the resolution of electron tomograms. J. Struct. Biol. 197, 114–122 (2017).

    PubMed  Google Scholar 

  99. Himes, B. A. & Zhang, P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15, 955–961 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, M. et al. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat. Methods 16, 1161–1168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5Å in cells. Nat. Methods 18, 186–193 (2021). Subtomogram averaging with Warp, RELION and M allowed for pseudo-atomic structures of ribosomes to be obtained in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Berger, C., Ravelli, R. B. G., López-Iglesias, C. & Peters, P. J. Endocytosed nanogold fiducials for improved in-situ cryo-electron tomography tilt-series alignment. J. Struct. Biol. 213, 107698 (2021).

    CAS  PubMed  Google Scholar 

  103. Castaño-Díez, D. The Dynamo package for tomography and subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services. Acta Crystallogr. D Struct. Biol. 73, 478–487 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Song, K. et al. In situ structure determination at nanometer resolution using TYGRESS. Nat. Methods 17, 201–208 (2020).

    CAS  PubMed  Google Scholar 

  105. Sanchez, R. M., Zhang, Y., Chen, W., Dietrich, L. & Kudryashev, M. Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging—single particle cryo-EM. Nat. Commun. 11, 3709 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Song, K. et al. In situ localization of N and C termini of subunits of the flagellar nexin–dynein regulatory complex (N–DRC) using SNAP tag and cryo-electron tomography. J. Biol. Chem. 290, 5341–5353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yi, H. et al. Native immunogold labeling of cell surface proteins and viral glycoproteins for cryo-electron microscopy and cryo-electron tomography applications. J. Histochem. Cytochem. 63, 780–792 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Spehner, D. et al. Cryo-FIB–SEM as a promising tool for localizing proteins in 3D. J. Struct. Biol. 211, 107528 (2020).

    CAS  PubMed  Google Scholar 

  109. Silvester, E. et al. DNA origami signposts for identifying proteins on cell membranes by electron cryotomography. Cell 184, 1110–1121.e16 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, Q., Mercogliano, C. P. & Löwe, J. A ferritin-based label for cellular electron cryotomography. Structure 19, 147–154 (2011).

    CAS  PubMed  Google Scholar 

  111. Frangakis, A. S. It’s noisy out there! A review of denoising techniques in cryo-electron tomography. J. Struct. Biol. 213, 107804 (2021).

    PubMed  Google Scholar 

  112. Frangakis, A. S. & Hegerl, R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135, 239–250 (2001).

    CAS  PubMed  Google Scholar 

  113. Croxford, M. et al. Entropy-regularized deconvolution of cellular cryotransmission electron tomograms. Proc. Natl Acad. Sci. USA 118, e2108738118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun. 11, 5208 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Buchholz, T.-O. et al. Content-aware image restoration for electron microscopy. Methods Cell Biol. 152, 277–289 (2019).

    PubMed  Google Scholar 

  116. Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fernandez, J.-J. et al. Removing contamination-induced reconstruction artifacts from cryo-electron tomograms. Biophys. J. 110, 850–859 (2016).

    CAS  PubMed  Google Scholar 

  118. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Chen, M. et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14, 983–985 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Moebel, E. et al. Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nat. Methods 18, 1386–1394 (2021).

    CAS  PubMed  Google Scholar 

  121. Xu, M. et al. De novo structural pattern mining in cellular electron cryotomograms. Structure 27, 679–691.e14 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Martinez-Sanchez, A. et al. Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nat. Methods 17, 209–216 (2020).

    CAS  PubMed  Google Scholar 

  123. Martinez-Sanchez, A., Garcia, I., Asano, S., Lucic, V. & Fernandez, J. J. Robust membrane detection based on tensor voting for electron tomography. J. Struct. Biol. 186, 49–61 (2014).

    PubMed  Google Scholar 

  124. Salfer, M., Collado, J. F., Baumeister, W., Fernández-Busnadiego, R. & Martínez-Sánchez, A. Reliable estimation of membrane curvature for cryo-electron tomography. PLoS Comput. Biol. 16, e1007962 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Frangakis, A. S. Mean curvature motion facilitates the segmentation and surface visualization of electron tomograms. J. Struct. Biol. 214, 107833 (2022).

    PubMed  Google Scholar 

  126. Deerinck, T. J. et al. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910 (1994).

    CAS  PubMed  Google Scholar 

  127. Schwartz, C. L., Sarbash, V. I., Atallakhanov, F. I., Mcintosh, J. R. & Nicastro, D. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J. Microsc. 227, 98–109 (2007).

    PubMed  Google Scholar 

  128. Sartori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007).

    PubMed  Google Scholar 

  129. Jasnin, M. et al. The architecture of traveling actin waves revealed by cryo-electron tomography. Structure 27, 1211–1223.e5 (2019).

    CAS  PubMed  Google Scholar 

  130. Chakraborty, S., Mahamid, J. & Baumeister, W. Cryoelectron tomography reveals nanoscale organization of the cytoskeleton and its relation to microtubule curvature inside cells. Structure 28, 991–1003.e4 (2020).

    CAS  PubMed  Google Scholar 

  131. Koning, R. I. et al. MAVIS: an integrated system for live microscopy and vitrification. Ultramicroscopy 143, 67–76 (2014).

    CAS  PubMed  Google Scholar 

  132. Van Driel, L. F., Valentijn, J. A., Valentijn, K. M., Koning, R. I. & Koster, A. J. Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. Eur. J. Cell Biol. 88, 669–684 (2009).

    PubMed  Google Scholar 

  133. Schorb, M. & Briggs, J. A. G. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity. Ultramicroscopy 143, 24–32 (2014).

    CAS  PubMed  Google Scholar 

  134. Arnold, J. et al. Site-specific cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophys. J. 110, 860–869 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Li, S. et al. ELI trifocal microscope: a precise system to prepare target cryo-lamellae for in situ cryo-ET study. Nat. Methods https://doi.org/10.1038/s41592-022-01748-0 (2023).

  136. Derosier, D. J. Where in the cell is my protein?. Q. Rev. Biophys. 54, e9 (2021).

    CAS  PubMed  Google Scholar 

  137. Boltje, D. B. et al. A cryogenic, coincident fluorescence, electron and ion beam microscope. eLife 11, e82891 (2022).

    PubMed  PubMed Central  Google Scholar 

  138. Wu, G.-H. et al. Multi-scale 3D cryo-correlative microscopy for vitrified cells. Structure 28, 1231–1237.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Nahmani, M., Lanahan, C., DeRosier, D. & Turrigiano, G. G. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions. Proc. Natl Acad. Sci. USA 114, 3832–3836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Faoro, R. et al. Aberration-corrected cryoimmersion light microscopy. Proc. Natl Acad. Sci. USA 115, 1204–1209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, L. et al. Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution. Commun. Biol. 2, 74 (2019).

    PubMed  PubMed Central  Google Scholar 

  142. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  143. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).

    CAS  PubMed  Google Scholar 

  145. Kaufmann, R. et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14, 4171–4175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Chang, Y.-W. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods 11, 737–739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, B. et al. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci. Rep. 5, 13017 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Dahlberg, P. D. et al. Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in Caulobacter. Proc. Natl Acad. Sci. USA 117, 202001849 (2020).

    Google Scholar 

  149. Tuijtel, M. W., Koster, A. J., Jakobs, S., Faas, F. G. A. & Sharp, T. H. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9, 1369 (2019). Study demonstrating localization-based super-resolution cryo-fluorescence microscopy on mammalian cells and characterization of the light intensities that can be used without devitrifying samples.

    PubMed  PubMed Central  Google Scholar 

  150. Moser, F. et al. Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. Proc. Natl Acad. Sci. USA 116, 4804–4809 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Phillips, M. A. et al. CryoSIM: super-resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultrastructural imaging. Optica 7, 802–812 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Sexton, D. L., Burgold, S., Schertel, A. & Tocheva, E. I. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr. Res. Struct. Biol. 4, 1–9 (2022).

    CAS  PubMed  Google Scholar 

  153. Gupta, H., McCann, M. T., Donati, L. & Unser, M. CryoGAN: a new reconstruction paradigm for single-particle cryo-EM via deep adversarial learning. IEEE Trans. Comput. Imaging 7, 759–774 (2021).

    Google Scholar 

  154. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Paul-Gilloteaux, P. et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Methods 14, 102–103 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Microscopy CORE Lab of the Maastricht MultiModal Molecular Imaging Institute of the Faculty of Health, Medicine and Life Sciences at Maastricht University for technical and scientific support. We thank M. Bárcena and S. Raunser and their co-authors for permission to modify and republish their figures. We thank H. Nguyen for editing the manuscript. We thank A. McDowall for critical reading of the manuscript. We acknowledge co-funding by the PPP Allowance made available by Health ~ Holland, Top Sector Life Sciences & Health, to stimulate public–private partnerships, under project number LHSM18067, as well as from the Netherlands Organisation for Scientific Research (NWO) in the framework of National Roadmap NEMI project number 184.034.014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Peters.

Ethics declarations

Competing interests

The University of Maastricht has filed patents, with R.B.G.R., C.L.-I. and P.J.P. as inventors, regarding vitrification devices. P.J.P. is a shareholder and chief scientific officer of the start-up CryoSol-World, which holds the licenses of these submitted patents (WO 2017/220750 and EP 3260839 B1). The other authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, C., Premaraj, N., Ravelli, R.B.G. et al. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat Methods 20, 499–511 (2023). https://doi.org/10.1038/s41592-023-01783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-023-01783-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing