Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AI-empowered super-resolution microscopy: a revolution in nanoscale cellular imaging

Abstract

Super-resolution microscopy (SRM) has revolutionized nanoscale cellular imaging, providing detailed insights into cellular architecture, organelle organization, molecular interactions and subcellular dynamics. Artificial intelligence (AI) has shown its transformative potential for improving SRM to advance our understanding of complex cellular structures and dynamics. This Review begins by offering a comprehensive overview of AI techniques in computer vision, focusing on their application to SRM. Additionally, this Review provides a thorough summary of publicly available code and datasets that can support the development and evaluation of AI-empowered SRM. Notably, many AI techniques in the domain of computer vision remain underexplored in SRM. The ongoing evolution of AI promises to unlock new potential in SRM, and the integration of cutting-edge AI technologies is poised to pioneer breakthroughs in nanoscale cellular imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A unifying framework of AI-SRM studies.
Fig. 2: AI-based image reconstruction methods.
Fig. 3: AI-SRM.
Fig. 4: Representative algorithms of AI-SRM.

Similar content being viewed by others

References

  1. Radmacher, N. et al. Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. Nat. Photonics 18, 1059–1066 (2024).

  2. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Izadi, S., Sutton, D. & Hamarneh, G. Image denoising in the deep learning era. Artif. Intell. Rev. 56, 5929–5974 (2023).

    Article  Google Scholar 

  9. Zhou, H. et al. Low-light image enhancement via generative perceptual priors. In Proceedings of the AAAI Conference on Artificial Intelligence https://doi.org/10.1609/aaai.v39i10.33168 (2025).

  10. Ma, H., Liu, S., Liao, Q., Zhang, J. & Xue, J. -H. Defocus image deblurring network with defocus map estimation as auxiliary task. IEEE Trans. Image Process. 31, 216–226 (2022).

    Article  PubMed  Google Scholar 

  11. Yang, W. et al. Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed. 21, 3106–3121 (2019).

    Article  Google Scholar 

  12. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018). This study uses a U-Net architecture to elevate WF images to super-resolution quality.

    Article  CAS  PubMed  Google Scholar 

  13. Saguy, A. et al. DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning. Nat. Methods 20, 1939–1948 (2023). This study combines biLSTM and CNN for time-series super-resolution in SMLM.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, R. et al. Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging. Nat. Commun. 14, 2854 (2023). This study uses an ESRGAN-based architecture to reconstruct SMLM images from WF images.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat. Methods 18, 678–687 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Saharia, C. et al. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 45, 4713–4726 (2022).

    Google Scholar 

  17. Wang, L. & Yoon, K. -J. Semi-supervised student-teacher learning for single image super-resolution. Pattern Recognit. 121, 108206 (2022).

    Article  Google Scholar 

  18. Wei, Y. et al. Unsupervised real-world image super resolution via domain-distance aware training. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 13380–13389 (IEEE, 2021).

  19. Neshatavar, R., Yavartanoo, M., Son, S. & Lee, K. M. ICF-SRSR: invertible scale-conditional function for self-supervised real-world single image super-resolution. In 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 1546–1556 (IEEE, 2024).

  20. Wang, W., Zhang, H., Yuan, Z. & Wang, C. Unsupervised real-world super-resolution: a domain adaptation perspective. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV) 4298–4307 (IEEE, 2021).

  21. Li, R. et al. From Synthetic to real: a calibration-free pipeline for few-shot raw image denoising. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1106–1114 (IEEE, 2024).

  22. Casas, L., Klimmek, A., Carneiro, G., Navab, N. & Belagiannis, V. Few-shot meta-denoising. Preprint at https://doi.org/10.48550/arXiv.1908.00111 (2019).

  23. Soh, J. W., Cho, S. & Cho, N. I. Meta-transfer learning for zero-shot super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 3516–3525 (IEEE, 2020).

  24. Ebrahimi, V. et al. Deep learning enables fast, gentle STED microscopy. Commun. Biol. 6, 674 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ling, C. et al. Fast structured illumination microscopy via deep learning. Photonics Res. 8, 1350–1359 (2020).

    Article  Google Scholar 

  26. Ning, K. et al. Deep self-learning enables fast, high-fidelity isotropic resolution restoration for volumetric fluorescence microscopy. Light Sci. Appl. 12, 204 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, X. et al. Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging. PhotoniX 5, 4 (2024).

    Article  Google Scholar 

  28. Qu, L. Self-inspired learning for denoising live-cell super-resolution microscopy. Nat. Methods 21, 1895–1908 (2024).

  29. Li, X. et al. Spatial redundancy transformer for self-supervised fluorescence image denoising. Nat. Comput. Sci. 3, 1067–1080 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiao, C. et al. Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy. Nat. Commun. 15, 4180 (2024). This approach integrates U-Net and RCAN in a zero-shot framework to achieve super-resolution from minimal input without relying on ground-truth references.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016).

  32. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y. et al. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European conference on computer vision (ECCV) 286–301 (2018).

  34. Dosovitskiy, A. et al. An image is worth 16 × 16 words: transformers for image recognition at scale. In International Conference on Learning Representations (ICLR) https://openreview.net/forum?id=YicbFdNTTy (2021).

  35. Liu, Z. et al. Swin Transformer: hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV) 9992–10002 (IEEE, 2021).

  36. Qiao, C. et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods 18, 194–202 (2021). This study uses Fourier channel attention to enhance SIM reconstruction.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, J. -Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In 2017 IEEE International Conference on Computer Vision (ICCV) 2242–2251(IEEE, 2017).

  38. Wang, X. et al. ESRGAN: enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops 63–79 (Springer, 2018).

  39. Huang, B. et al. Enhancing image resolution of confocal fluorescence microscopy with deep learning. PhotoniX 4, 2 (2023). This GAN-based framework integrates spatial and frequency-domain features to translate confocal images into STED-quality outputs.

    Article  Google Scholar 

  40. Jin, L. et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat. Commun. 11, 1934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shah, Z. H. et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Photonics Res. 9, B168–B181 (2021).

    Article  Google Scholar 

  42. Müller, M., Mönkemöller, V., Hennig, S., Hübner, W. & Huser, T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun. 7, 10980 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dong, C., Loy, C. C., He, K. & Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2016).

    Article  PubMed  Google Scholar 

  44. Lim, B., Son, S., Kim, H., Nah, S. & Lee, K. M. Enhanced deep residual networks for single image super-resolution. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1132–1140 (IEEE, 2017).

  45. Isola, P., Zhu, J. -Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 5967–5976 (IEEE, 2017).

  46. Kim, T., Moon, S. & Xu, K. Information-rich localization microscopy through machine learning. Nat. Commun. 10, 1996 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Spahn, C. et al. DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Commun. Biol. 5, 688 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bouchard, C. et al. Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition. Nat. Mach. Intell. 5, 830–844 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Qiao, C. et al. A neural network for long-term super-resolution imaging of live cells with reliable confidence quantification. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02553-8 (2025). This study introduces deformable phase-space alignment across frames, enabling high-quality, long-term SIM imaging.

  50. Narayanasamy, K. K., Rahm, J. V., Tourani, S. & Heilemann, M. Fast DNA-PAINT imaging using a deep neural network. Nat. Commun. 13, 5047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Speiser, A. et al. Deep learning enables fast and dense single-molecule localization with high accuracy. Nat. Methods 18, 1082–1090 (2021). This study uses simulator-based learning and U-Net architectures with temporal context integration to achieve accurate 3D localization of high-density single emitters in SMLM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fu, S. et al. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging. Nat. Methods 20, 459–468 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458–464 (2018).

    Article  CAS  Google Scholar 

  54. Nehme, E. et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods 17, 734–740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36, 460–468 (2018). This study applies a Pix2Pix-based architecture to achieve super-resolution imaging in SMLM from sparse localization data or WF images.

    Article  CAS  PubMed  Google Scholar 

  56. Li, Y. et al. Incorporating the image formation process into deep learning improves network performance. Nat. Methods 19, 1427–1437 (2022). This study integrates Richardson–Lucy deconvolution with a fully convolutional architecture to enable high-quality imaging across diverse microscopies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma, C., Tan, W., He, R. & Yan, B. Pretraining a foundation model for generalizable fluorescence microscopy-based image restoration. Nat. Methods 21, 1558–1567 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Li, X. et al. Three-dimensional structured illumination microscopy with enhanced axial resolution. Nat. Biotechnol. 41, 1307–1319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nabi, I. R. et al. AI analysis of super-resolution microscopy: biological discovery in the absence of ground truth. J. Cell Biol. 223, e202311073 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karim, N. et al. C-SFDA: a curriculum learning aided self-training framework for efficient source free domain adaptation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 24120–24131 (IEEE, 2023).

  61. Li, D., Wu, A., Wang, Y. & Han, Y. Prompt-driven dynamic object-centric learning for single domain generalization. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 17606–17615 (IEEE, 2024).

  62. Wang, Z., Zhao, L. & Xing, W. StyleDiffusion: controllable disentangled style transfer via diffusion models. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV) 7643–7655 (IEEE, 2023).

  63. Ye, Q. et al. mPLUG-Owl2: revolutionizing multi-modal large language model with modality collaboration. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 13040–13051 (IEEE, 2024).

  64. Saguy, A. et al. This microtubule does not exist: super-resolution microscopy image generation by a diffusion model. Small Methods 9, 2400672 (2025).

    Article  CAS  PubMed  Google Scholar 

  65. Chu, T. et al. Rethinking fast Fourier convolution in image inpainting. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV) 23195–23205 (IEEE, 2023).

  66. Chen, Z., He, Z. & Lu, Z. -M. DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Trans. Image Process. 33, 1002–1015 (2024).

    Article  PubMed  Google Scholar 

  67. Qian, J., Wang, C., Wu, H., Chen, Q. & Zuo, C. Ensemble deep learning-enabled single-shot composite structured illumination microscopy (eDL-cSIM). PhotoniX 6, 13 (2025).

    Article  Google Scholar 

  68. Qiao, C. et al. Fast-adaptive super-resolution lattice light-sheet microscopy for rapid, long-term, near-isotropic subcellular imaging. Nat. Methods https://doi.org/10.1038/s41592-025-02678-3 (2025).

  69. Qiao, C. et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat. Biotechnol. 41, 367–377 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wassie, A. T., Zhao, Y. & Boyden, E. S. Expansion microscopy: principles and uses in biological research. Nat. Methods 16, 33–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Strack, R. Whole-brain imaging with ExLLSM. Nat. Methods 16, 217–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. et al. Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes. Nat. Protoc. 13, 1869–1895 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Y. et al. A poisson-gaussian denoising dataset with real fluorescence microscopy images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 11710–11718 (IEEE, 2019).

  76. Akbar, S. A. & Verma, A. Analyzing noise models and advanced filtering algorithms for image enhancement. Preprint at https://doi.org/10.48550/arXiv.2410.21946 (2024).

  77. Rahaman, N. et al. On the spectral bias of neural networks. In Proceedings of the 36th International Conference on Machine Learning vol. 97 (eds. K. Chaudhuri et al.) 5301–5310 (PMLR, 2019).

  78. Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).

    Article  Google Scholar 

  79. Bai, Y., Cheung, G., Liu, X. & Gao, W. Graph-based blind image deblurring from a single photograph. IEEE Trans. Image Process. 28, 1404–1418 (2019).

    Article  Google Scholar 

  80. Nah, S., Son, S., Lee, J. & Lee, K. M. Clean images are hard to reblur: exploiting the ill-posed inverse task for dynamic scene deblurring. In the Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25–29, 2022 (2022).

  81. Liang, J. et al. SwinIR: image restoration using Swin transformer. In 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) 1833–1844 (IEEE, 2021).

  82. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (eds. I. Guyon et al.) vol. 30 (Curran Associates, 2017).

  83. Cui, Z., Chang, H., Shan, S., Zhong, B. & Chen, X. Deep network cascade for image super-resolution. In Computer Vision – ECCV 2014 vol. 8693 (eds. D. Fleet et al.) 49–64 (Springer International Publishing, 2014).

  84. Zhu, M., Alperovich, A., Johannsen, O., Sulc, A. & Goldluecke, B. An epipolar volume autoencoder with adversarial loss for deep light field super-resolution. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1853–1861 (IEEE, 2019).

  85. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 vol. 9351 (eds. N. Navab et al.) 234–241 (Springer International Publishing, 2015).

  86. Mao, X. -J., Shen, C. & Yang, Y. -B. Image restoration using very deep convolutional encoder–decoder networks with symmetric skip connections. In Advances in Neural Information Processing Systems 29 (NIPS 2016) 2802–2810 (Curran Associates 2016).

  87. Ledig, C. et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 4681–4690 (2017).

  88. Zhang, C. et al. Correction of out-of-focus microscopic images by deep learning. Comput. Struct. Biotechnol. J. 20, 1957–1966 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. In International Conference on Learning Representations (ICLR) https://openreview.net/forum?id=Hk99zCeAb (2018).

  90. Huang, Y., Gokaslan, A., Kuleshov, V. & Tompkin, J. The GAN is dead; long live the GAN! A modern GAN baseline. In Advances in Neural Information Processing Systems 37 (NIPS 2024) 44177–44215 (Neural Information Processing Systems Foundation, 2024).

  91. Wang, X., Xie, L., Dong, C. & Shan, Y. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data. In 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) 1905–1914 (IEEE, 2021).

  92. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems vol. 33 (eds. H. Larochelle et al.) 6840–6851 (Curran Associates, 2020).

  93. Wang, Z. et al. Patch diffusion: faster and more data-efficient training of diffusion models. Adv. Neural Inf. Process. Syst. 36, 72137–72154 (2023).

    Google Scholar 

  94. Mohammadi, P., Ebrahimi-Moghadam, A. & Shirani, S. Subjective and objective quality assessment of image: a survey. Majlesi J. Electr. Eng. 9, 55–83 (2015).

    Google Scholar 

  95. Zhang, R., Isola, P., Efros, A. A., Shechtman, E. & Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 586–595 (IEEE, 2018).

  96. Zhao, W. et al. Quantitatively mapping local quality of super-resolution microscopy by rolling Fourier ring correlation. Light Sci. Appl. 12, 298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Deng, J. et al. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82273890 to Y.Z., 81925022, T2288102 and 32227802 to L.C.), the National Key Research and Development Program of China (2022YFC3400600 to L.C.), a Shenzhen Stable Support Grant (GXWD 20231130103401001 to Y.Z.), the Shenzhen Science and Technology Program (JCYJ20240813104817024 to Y.Z.) and the High-performance Computing Platform of Peking University. L.C. is also supported by New Cornerstone Science Foundation. All authors participated in the discussions and data interpretation.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. conceived the study. Y.Z., S.L. and X.M. wrote the manuscript and designed the figures. Y.Z., L.C., S.L., X.M., B.Z. and W.T. revised the manuscript and figures. Y.Z. and L.C. supervised the project.

Corresponding authors

Correspondence to Liangyi Chen  (陈良怡) or Yang Zhang  (张阳).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Jiji Chen and Yi Xue for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Meng, X., Zhou, B. et al. AI-empowered super-resolution microscopy: a revolution in nanoscale cellular imaging. Nat Methods (2025). https://doi.org/10.1038/s41592-025-02871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41592-025-02871-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing