Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Computational strategies for cross-species knowledge transfer

Abstract

Research organisms provide invaluable insights into human biology and diseases, serving as essential tools for functional experiments, disease modeling and drug testing. However, evolutionary divergence between humans and research organisms hinders effective knowledge transfer across species. Here, we review state-of-the-art methods for computationally transferring knowledge across species, primarily focusing on methods that use transcriptome data and/or molecular networks. Our Perspective addresses four key areas: (1) transferring disease and gene annotation knowledge across species, (2) identifying functionally equivalent molecular components, (3) inferring equivalent perturbed genes or gene sets and (4) identifying equivalent cell types. We conclude with an outlook on future directions and several key challenges that remain in cross-species knowledge transfer, including introducing the concept of ‘agnology’ to describe functional equivalence of biological entities, regardless of their evolutionary origins. This concept is becoming pervasive in integrative data-driven models in which evolutionary origins of functions can remain unresolved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of each section of this Perspective.
Fig. 2: How to predict disease–gene or function–gene relationships across species.
Fig. 3: How to identify functionally equivalent molecular components across species.
Fig. 4: How to infer perturbed transcriptomes across species.
Fig. 5: How to map equivalent cell types and cell states across species.
Fig. 6: Definition of agnology.

Similar content being viewed by others

References

  1. Barré-Sinoussi, F. & Montagutelli, X. Animal models are essential to biological research: issues and perspectives. Future Sci. OA 1, FSO63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baldridge, D. et al. Model organisms contribute to diagnosis and discovery in the Undiagnosed Diseases Network: current state and a future vision. Orphanet J. Rare Dis. 16, 206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baumans, V. Use of animals in experimental research: an ethical dilemma? Gene Ther. 11, S64–S66 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Festing, S. & Wilkinson, R. The ethics of animal research. EMBO Rep. 8, 526–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Demers, G. et al. Harmonization of animal care and use guidance. Science 312, 700–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Wangler, M. F. et al. Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics 207, 9–27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aitman, T. J. et al. The future of model organisms in human disease research. Nat. Rev. Genet. 12, 575–582 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. McClellan, J. & King, M.-C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Tadano, R. et al. Molecular characterization reveals genetic uniformity in experimental chicken resources. Exp. Anim. 59, 511–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Franěk, R. et al. Isogenic lines in fish — a critical review. Rev. Aquacult. 12, 1412–1434 (2019).

    Article  Google Scholar 

  11. Cui, C., Zhou, Y. & Cui, Q. Defining the functional divergence of orthologous genes between human and mouse in the context of miRNA regulation. Brief. Bioinform. 22, bbab253 (2021).

    Article  PubMed  Google Scholar 

  12. Nehrt, N. L., Clark, W. T., Radivojac, P. & Hahn, M. W. Testing the ortholog conjecture with comparative functional genomic data from mammals. PLoS Comput. Biol. 7, e1002073 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stamboulian, M., Guerrero, R. F., Hahn, M. W. & Radivojac, P. The ortholog conjecture revisited: the value of orthologs and paralogs in function prediction. Bioinformatics 36, i219–i226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nadimpalli, S., Persikov, A. V. & Singh, M. Pervasive variation of transcription factor orthologs contributes to regulatory network evolution. PLoS Genet. 11, e1005011 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Han, S. K., Kim, D., Lee, H., Kim, I. & Kim, S. Divergence of noncoding regulatory elements explains gene–phenotype differences between human and mouse orthologous genes. Mol. Biol. Evol. 35, 1653–1667 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Büscher, T., Ganai, N., Gompper, G. & Elgeti, J. Tissue evolution: mechanical interplay of adhesion, pressure, and heterogeneity. New J. Phys. 22, 033048 (2020).

    Article  Google Scholar 

  18. Ha, D. et al. Evolutionary rewiring of regulatory networks contributes to phenotypic differences between human and mouse orthologous genes. Nucleic Acids Res. 50, 1849–1863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhrissorrakrai, K. et al. Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge. Bioinformatics 31, 471–483 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhou, N. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol. 20, 244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang, Y. et al. An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 17, 184 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10, 221–227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Friedberg, I. & Radivojac, P. Community-wide evaluation of computational function prediction. In Methods in Molecular Biology 133–146 (Springer, 2016).

  24. Brubaker, D. K. & Lauffenburger, D. A. Translating preclinical models to humans. Science 367, 742–743 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. McWhite, C. D., Liebeskind, B. J. & Marcotte, E. M. Applications of comparative evolution to human disease genetics. Curr. Opin. Genet. Dev. 35, 16–24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kowald, A. et al. Transfer learning of clinical outcomes from preclinical molecular data, principles and perspectives. Brief. Bioinform. 23, bbac133 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dougherty, B. V. & Papin, J. A. Systems biology approaches help to facilitate interpretation of cross-species comparisons. Curr. Opin. Toxicol. 23–24, 74–79 (2020).

    Article  Google Scholar 

  28. Feuermann, M. et al. A compendium of human gene functions derived from evolutionary modelling. Nature 640, 146–154 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, R. S. et al. A rapid method for directed gene knockout for screening in G0 zebrafish. Dev. Cell 46, 112–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. D’Agostino, Y. et al. Loss of circadian rhythmicity in bdnf knockout zebrafish larvae. iScience 25, 104054 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shearin, A. L. & Ostrander, E. A. Leading the way: canine models of genomics and disease. Dis. Model. Mech. 3, 27–34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castoe, T. A. et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc. Natl Acad. Sci. USA 110, 20645–20650 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Braasch, I. et al. The spotted gar genome illuminates vertebrate evolution and facilitates human–teleost comparisons. Nat. Genet. 48, 427–437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grohme, M. A. et al. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554, 56–61 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, R., Mancuso, C. A., Yannakopoulos, A., Johnson, K. A. & Krishnan, A. Supervised learning is an accurate method for network-based gene classification. Bioinformatics 36, 3457–3465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, X., Gulbahce, N. & Yu, H. Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10, 280–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Singh-Blom, U. M. et al. Prediction and validation of gene–disease associations using methods inspired by social network analyses. PLoS ONE 8, e58977 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao, V. et al. An integrative tissue-network approach to identify and test human disease genes. Nat. Biotechnol. 36, 1091–1099 (2018). This study introduced diseaseQUEST, a method to combine human GWAS-derived gene–disease associations and research organism functional networks to predict candidate disease-related genes in research organisms.

    Article  CAS  Google Scholar 

  40. Chikina, M. D. & Troyanskaya, O. G. Accurate quantification of functional analogy among close homologs. PLoS Comput. Biol. 7, e1001074 (2011). This method uses functional gene networks and metagenes of neighboring genes in these networks to find agnologs across species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh, R., Xu, J. & Berger, B. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl Acad. Sci. USA 105, 12763–12768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, C. Y. et al. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes. PLoS Comput. Biol. 9, e1002957 (2013). This study introduced the FKT method, a network-based approach that uses functional equivalents (that we call ‘agnologs’) to enhance gene annotation across species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamaguchi, M., Imai, F., Tonou-Fujimori, N. & Masai, I. Mutations in N-cadherin and a Stardust homolog, Nagie oko, affect cell-cycle exit in zebrafish retina. Mech. Dev. 127, 247–264 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Mancuso, C. A., Johnson, K. A., Liu, R. & Krishnan, A. Joint representation of molecular networks from multiple species improves gene classification. PLoS Comput. Biol. 20, e1011773 (2024). This study introduced GenePlexusZoo, a method to simultaneously integrate network information across more than two species to improve gene classification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barot, M., Gligorijević, V., Cho, K. & Bonneau, R. NetQuilt: deep multispecies network-based protein function prediction using homology-informed network similarity. Bioinformatics 37, 2414–2422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katz, L. A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953).

    Article  Google Scholar 

  47. Liben-Nowell, D. & Kleinberg, J. The link‐prediction problem for social networks. J. Am. Soc. Inf. Sci. 58, 1019–1031 (2007).

    Article  Google Scholar 

  48. Gligorijevic, D. Large-scale discovery of disease–disease and disease–gene associations. Sci. Rep. 6, 32404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sonawane, A. R. et al. Understanding tissue-specific gene regulation. Cell Rep. 21, 1077–1088 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hekselman, I. & Yeger-Lotem, E. Mechanisms of tissue and cell-type specificity in heritable traits and diseases. Nat. Rev. Genet. 21, 137–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Greene, C. S. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cowen, L., Ideker, T., Raphael, B. J. & Sharan, R. Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18, 551–562 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Picart-Armada, S. et al. Benchmarking network propagation methods for disease gene identification. PLoS Comput. Biol. 15, e1007276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mastropietro, A., De Carlo, G. & Anagnostopoulos, A. XGDAG: explainable gene–disease associations via graph neural networks. Bioinformatics 39, btad482 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Domazet-Loso, T. & Tautz, D. An ancient evolutionary origin of genes associated with human genetic diseases. Mol. Biol. Evol. 25, 2699–2707 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cai, J. J., Borenstein, E., Chen, R. & Petrov, D. A. Similarly strong purifying selection acts on human disease genes of all evolutionary ages. Genome Biol. Evol. 1, 131–144 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lopez-Bigas, N. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 32, 3108–3114 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dickerson, J. E. & Robertson, D. L. On the origins of Mendelian disease genes in man: the impact of gene duplication. Mol. Biol. Evol. 29, 61–69 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D. & Yeates, T. O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci. USA 96, 4285–4288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marcotte, E. M. et al. Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Maxwell, E. K. et al. Evolutionary profiling reveals the heterogeneous origins of classes of human disease genes: implications for modeling disease genetics in animals. BMC Evol. Biol. 14, 212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Amberger, J. S., Bocchini, C. A., Scott, A. F. & Hamosh, A. OMIM.org: leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 47, D1038–D1043 (2018).

    Article  PubMed Central  Google Scholar 

  64. Tabach, Y. et al. Human disease locus discovery and mapping to molecular pathways through phylogenetic profiling. Mol. Syst. Biol. 9, 692 (2013). This study uses phylogenetic profiles to enable systematic identifications of genome-wide functional modules that co-occur across the eukaryotic phylogeny.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dey, G., Jaimovich, A., Collins, S. R., Seki, A. & Meyer, T. Systematic discovery of human gene function and principles of modular organization through phylogenetic profiling. Cell Rep. 10, 993–1006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown, S. D. M. et al. High-throughput mouse phenomics for characterizing mammalian gene function. Nat. Rev. Genet. 19, 357–370 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Peterson, K. A. & Murray, S. A. Progress towards completing the mutant mouse null resource. Mamm. Genome 33, 123–134 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Alliance of Genome Resources Consortium. Harmonizing model organism data in the Alliance of Genome Resources. Genetics 220, iyac022 (2022).

    Article  Google Scholar 

  69. Matentzoglu, N. et al. The Unified Phenotype Ontology : a framework for cross-species integrative phenomics. Genetics 229, iyaf027 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoehndorf, R., Schofield, P. N. & Gkoutos, G. V. PhenomeNET: a whole-phenome approach to disease gene discovery. Nucleic Acids Res. 39, e119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Smedley, D. et al. Next-generation diagnostics and disease–gene discovery with the Exomiser. Nat. Protoc. 10, 2004–2015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alghamdi, S. M., Schofield, P. N. & Hoehndorf, R. Contribution of model organism phenotypes to the computational identification of human disease genes. Dis. Model. Mech. 15, dmm049441 (2022). This study uses phenotype ontologies to relate research organism-specific and human-specific ontologies. By treating connected ontologies as graphs, they also proposed using graph embedding-based ML approaches to predict disease–gene associations across species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Althagafi, A., Zhapa-Camacho, F. & Hoehndorf, R. Prioritizing genomic variants through neuro-symbolic, knowledge-enhanced learning. Bioinformatics 40, btae301 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gherardini, P. F., Wass, M. N., Helmer-Citterich, M. & Sternberg, M. J. E. Convergent evolution of enzyme active sites is not a rare phenomenon. J. Mol. Biol. 372, 817–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Tulipano, A., Donvito, G., Licciulli, F., Maggi, G. & Gisel, A. Gene analogue finder: a GRID solution for finding functionally analogous gene products. BMC Bioinformatics 8, 329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li, H. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Fan, J. et al. Functional protein representations from biological networks enable diverse cross-species inference. Nucleic Acids Res. 47, e51 (2019). This study introduces MUNK, a method that uses aligned protein–protein interaction network representations to identify agnologous gene pairs. Additionally, this work expands the concept of phenologs, characterizing them by a significant overlap of agnologous gene pairs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arsenescu, V. et al. MUNDO: protein function prediction embedded in a multispecies world. Bioinform. Adv. 2, vbab025 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li, L. et al. Joint embedding of biological networks for cross-species functional alignment. Bioinformatics 39, btad529 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Rives, A. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hamamsy, T. et al. Protein remote homology detection and structural alignment using deep learning. Nat. Biotechnol. 42, 975–985 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hong, L. et al. Fast, sensitive detection of protein homologs using deep dense retrieval. Nat. Biotechnol. 43, 983–995 (2025).

    Article  CAS  PubMed  Google Scholar 

  84. Brixi, G. et al. Genome modeling and design across all domains of life with Evo 2. Preprint at bioRxiv https://doi.org/10.1101/2025.02.18.638918 (2025).

  85. McGary, K. L. et al. Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc. Natl Acad. Sci. USA 107, 6544–6549 (2010). This study introduced the concept of phenologs, which facilitates finding phenotypic counterparts across species by looking at ortholog overlap between genes annotated to phenotypes in different species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, J., Shah, M., Ballouz, S., Crow, M. & Gillis, J. CoCoCoNet: conserved and comparative co-expression across a diverse set of species. Nucleic Acids Res. 48, W566–W571 (2020). This study introduced CoCoCoNet, a method that helps to find agnologous gene sets across species by comparing coexpression networks generated in different species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. El-Kebir, M. et al. xHeinz: an algorithm for mining cross-species network modules under a flexible conservation model. Bioinformatics 31, 3147–3155 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Deshpande, R., Sharma, S., Verfaillie, C. M., Hu, W.-S. & Myers, C. L. A scalable approach for discovering conserved active subnetworks across species. PLoS Comput. Biol. 6, e1001028 (2010). This study introduced neXus, a method that integrates DEG lists and network topology to find agnologous gene modules across species.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zinman, G. E. et al. ModuleBlast: identifying activated sub-networks within and across species. Nucleic Acids Res. 43, e20 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zong, W. et al. Transcriptomic congruence analysis for evaluating model organisms. Proc. Natl Acad. Sci. USA 120, e2202584120 (2023). This study introduced CAMO, a method to systematically quantify the similarity between perturbed transcriptomic profiles across species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takao, K. & Miyakawa, T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 112, 1167–1172 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Putman, T. E. et al. The Monarch Initiative in 2024: an analytic platform integrating phenotypes, genes and diseases across species. Nucleic Acids Res. 52, D938–D949 (2023).

    Article  PubMed Central  Google Scholar 

  94. Normand, R. et al. Found in Translation: a machine learning model for mouse-to-human inference. Nat. Methods 15, 1067–1073 (2018). This study introduced FIT, a method that investigated the possibility of transferring DEG results across species using linear models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brubaker, D. K., Proctor, E. A., Haigis, K. M. & Lauffenburger, D. A. Computational translation of genomic responses from experimental model systems to humans. PLoS Comput. Biol. 15, e1006286 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brubaker, D. K. et al. An interspecies translation model implicates integrin signaling in infliximab-resistant inflammatory bowel disease. Sci. Signal. 13, eaay3258 (2020). This study introduced TransComp-R, a method that allows transferring knowledge across species when the data from each species were not measured using the same omics modality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Suarez-Lopez, L. et al. Cross-species transcriptomic signatures predict response to MK2 inhibition in mouse models of chronic inflammation. iScience 24, 103406 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, M. J. et al. Computational interspecies translation between Alzheimer’s disease mouse models and human subjects identifies innate immune complement, TYROBP, and TAM receptor agonist signatures. Front. Neurosci. 15, 727784 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Carroll, M. J., Garcia-Reyero, N., Perkins, E. J. & Lauffenburger, D. A. Translatable pathways classification (TransPath-C) for inferring processes germane to human biology from animal studies data: example application in neurobiology. Integr. Biol. 13, 237–245 (2021).

    Article  Google Scholar 

  100. Russkikh, N. et al. Style transfer with variational autoencoders is a promising approach to RNA-seq data harmonization and analysis. Bioinformatics 36, 5076–5085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Meimetis, N. et al. AutoTransOP: translating omics signatures without orthologue requirements using deep learning. NPJ Syst. Biol. Appl. 10, 13 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cai, M., Hao Nguyen, C., Mamitsuka, H. & Li, L. XGSEA: CROSS-species gene set enrichment analysis via domain adaptation. Brief. Bioinform. 22, bbaa406 (2021).

    Article  PubMed  Google Scholar 

  105. Ali, A. et al. The ancestral gene repertoire of animal stem cells. Proc. Natl Acad. Sci. USA 112, E7093–E7100 (2015).

    Google Scholar 

  106. Shafer, M. E. R. Cross-species analysis of single-cell transcriptomic data. Front. Cell Dev. Biol. 7, 175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bailon-Zambrano, R. et al. Variable paralog expression underlies phenotype variation. eLife 11, e79247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Forslund, K., Schreiber, F., Thanintorn, N. & Sonnhammer, E. L. L. OrthoDisease: tracking disease gene orthologs across 100 species. Brief. Bioinform. 12, 463–473 (2011).

    Article  PubMed  Google Scholar 

  112. Song, Y., Miao, Z., Brazma, A. & Papatheodorou, I. Benchmarking strategies for cross-species integration of single-cell RNA sequencing data. Nat. Commun. 14, 6495 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 10, e66747 (2021). This study introduced SAMap, a method that fully uses complex homology patterns to align single-cell transcriptomes across a pair of species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rosen, Y. et al. Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN. Nat. Methods 21, 1492–1500 (2024). This study introduced SATURN, a method that uses all genes, regardless of their evolutionary relationships, to align single-cell transcriptomes across species. SATURN is also able to simultaneously integrate single-cell transcriptomes from more than two species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Galkin, F. et al. Precious3GPT: multimodal multi-species multi-omics multi-tissue transformer for aging research and drug discovery. Preprint at bioRxiv https://doi.org/10.1101/2024.07.25.605062 (2024).

  118. Yang, X. et al. GeneCompass: deciphering universal gene regulatory mechanisms with a knowledge-informed cross-species foundation model. Cell Res. 34, 830–845 (2024). This method employs a transformer-based architecture to align agnologous cells across species while integrating auxiliary information such as gene regulatory networks, gene promoters, gene families and coexpression networks.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Rosen, Y. et al. Universal Cell Embeddings: a foundation model for cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.11.28.568918 (2023).

  120. Marian, A. J. Modeling human disease phenotype in model organisms. Circ. Res. 109, 356–359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, Y. & Agarwal, P. A pathway-based view of human diseases and disease relationships. PLoS ONE 4, e4346 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cui, P., Ma, X., Li, H., Lang, W. & Hao, J. Shared biological pathways between Alzheimer’s disease and ischemic stroke. Front. Neurosci. 12, 605 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gokuladhas, S., Schierding, W., Golovina, E., Fadason, T. & O'Sullivan, J. Unravelling the shared genetic mechanisms underlying 18 autoimmune diseases using a systems approach. Front. Immunol. 12, 693142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tokarek, J. et al. Molecular processes involved in the shared pathways between cardiovascular diseases and diabetes. Biomedicines 11, 2611 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stoney, R., Robertson, D. L., Nenadic, G. & Schwartz, J.-M. Mapping biological process relationships and disease perturbations within a pathway network. NPJ Syst. Biol. Appl. 4, 22 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hickey, S. L., McKim, A., Mancuso, C. A. & Krishnan, A. A network-based approach for isolating the chronic inflammation gene signatures underlying complex diseases towards finding new treatment opportunities. Front. Pharmacol. 13, 995459 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Buphamalai, P., Kokotovic, T., Nagy, V. & Menche, J. Network analysis reveals rare disease signatures across multiple levels of biological organization. Nat. Commun. 12, 6306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gargano, M. A. et al. The Human Phenotype Ontology in 2024: phenotypes around the world. Nucleic Acids Res. 52, D1333–D1346 (2023).

    Article  PubMed Central  Google Scholar 

  129. Blair, D. R., Hoffmann, T. J. & Shieh, J. T. Common genetic variation associated with Mendelian disease severity revealed through cryptic phenotype analysis. Nat. Commun. 13, 3675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Maassen, W. et al. Curation and expansion of the Human Phenotype Ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching. Front. Immunol. 14, 1215869 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Brunet, F. G. et al. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol. Biol. Evol. 23, 1808–1816 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. True, J. R. & Haag, E. S. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3, 109–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Ghadie, M. A., Coulombe-Huntington, J. & Xia, Y. Interactome evolution: insights from genome-wide analyses of protein–protein interactions. Curr. Opin. Struct. Biol. 50, 42–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Ecovoiu, A. A., Ratiu, A. C., Micheu, M. M. & Chifiriuc, M. C. Inter-species rescue of mutant phenotype—the standard for genetic analysis of human genetic disorders in Drosophila melanogaster model. Int. J. Mol. Sci. 23, 2613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kachroo, A. H. et al. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348, 921–925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Futuyma, D. J. Evolution (Sinauer Associates, 2013).

  137. Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2022).

    Article  PubMed Central  Google Scholar 

  138. Szymborski, J. & Emad, A. INTREPPPID—an orthologue-informed quintuplet network for cross-species prediction of protein–protein interaction. Brief. Bioinform. https://doi.org/10.1093/bib/bbae405 (2024).

  139. Walhout, A. J. M. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Yu, H. et al. Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res. 14, 1107–1118 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wong, A. K., Krishnan, A., Yao, V., Tadych, A. & Troyanskaya, O. G. IMP 2.0: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res. 43, W128–W133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sealfon, R. S. G., Wong, A. K. & Troyanskaya, O. G. Machine learning methods to model multicellular complexity and tissue specificity. Nat. Rev. Mater. 6, 717–729 (2021).

    Article  Google Scholar 

  143. Saha, A. et al. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res. 27, 1843–1858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Burns, J. J. R. et al. Addressing noise in co-expression network construction. Brief. Bioinform. 23, bbab495 (2021).

    Article  PubMed Central  Google Scholar 

  145. Xue, S. et al. Applying differential network analysis to longitudinal gene expression in response to perturbations. Front. Genet. 13, 1026487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, R., Yuan, H., Johnson, K. & Krishnan, A. CONE: context-specific network embedding via contextualized graph attention. In Proc. 19th Machine Learning in Computational Biology Meeting (eds. Knowles, D. A. & Mostafavi, S.) 261, 53–71 (2024).

  147. Li, M. M. et al. Contextual AI models for single-cell protein biology. Nat. Methods 21, 1546–1557 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zitnik, M. & Leskovec, J. Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33, i190–i198 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

  150. Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sokolova, K. et al. Atlas of primary cell-type-specific sequence models of gene expression and variant effects. Cell Rep. Methods 3, 100580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 6, 1353–1369 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Bradshaw, M. S., Gaskell, A. & Layer, R. M. The effects of biological knowledge graph topology on embedding-based link prediction. Preprint at bioRxiv https://doi.org/10.1101/2024.06.10.598277 (2024).

  155. O’Neil, S. T. et al. Phenomics Assistant: an interface for LLM-based biomedical knowledge graph exploration. Preprint at bioRxiv https://doi.org/10.1101/2024.01.31.578275 (2024).

  156. Gaudet, P. & Dessimoz, C. Gene Ontology: pitfalls, biases, and remedies. In Methods in Molecular Biology 189–205 (Springer, 2016).

  157. Caufield, J. H. et al. Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES): a method for populating knowledge bases using zero-shot learning. Bioinformatics https://doi.org/10.1093/bioinformatics/btae104 (2024).

  158. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Russell, J. J. et al. Non-model model organisms. BMC Biol. 15, 55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Smith, J. J. et al. A chromosome-scale assembly of the axolotl genome. Genome Res. 29, 317–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kourakis, M. J. & Smith, W. C. An organismal perspective on C. intestinalis development, origins and diversification. eLife 4, e06024 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by NIH R35 GM128765 and Simons Foundation 1017799 (to A.K.). (Zebra)fish–human research transfer in the Braasch laboratory has been supported by NIH R01 OD011116. We thank all members in the Krishnan and Braasch laboratories for helpful discussion and feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. drafted the manuscript. H.Y., C.A.M., K.J., I.B. and A.K. edited the manuscript.

Corresponding authors

Correspondence to Ingo Braasch or Arjun Krishnan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Ran Ran, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Madhura Mukhopadhyay, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1

Supplementary Table 1

Summary of reviewed methods.

Supplementary Table 2

Data related to reviewed methods.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Mancuso, C.A., Johnson, K. et al. Computational strategies for cross-species knowledge transfer. Nat Methods (2025). https://doi.org/10.1038/s41592-025-02931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41592-025-02931-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing