Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Biophysical models

Differentiable simulation expands frontiers for biophysical neural models

JAXLEY, a differentiable simulator, leverages automatic differentiation and GPU acceleration to make large-scale biophysical neuron model optimization feasible. This approach uniquely combines biological accuracy with advanced machine-learning optimization techniques, allowing for efficient hyperparameter tuning and the exploration of neural computation mechanisms at scale.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: JAXLEY workflow: from experimental data to optimized neural models and behavior.

References

  1. Dura-Bernal, S. et al. J. Neurosci. 44, e1236242024 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dura-Bernal, S. et al. eLife 8, e44494 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Neymotin, S. A. et al. eLife 9, 740597 (2020).

    Article  Google Scholar 

  4. Deistler, M. et al. Nat. Methods https://doi.org/10.1038/s41592-025-02895-w (2025).

    Article  PubMed  Google Scholar 

  5. Hazan, H. et al. Front. Neuroinform. 12, 89 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paszke, A. et al. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019).

    Google Scholar 

  7. Fang, W. et al. Sci. Adv. 9, eadi1480 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eshraghian, J. K. et al. Proc. IEEE Inst. Electr. Electron. Eng. 111, 1016–1054 (2023).

    Article  Google Scholar 

  9. Pehle, C. & Pedersen, J. E. Zenodo https://doi.org/10.5281/zenodo.4422025 (2021).

  10. Awile, O. et al. Front. Neuroinform. 16, 884046 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hartl, B., Zhang, Y., Hazan, H. & Levin, M. Adv. Sci. https://doi.org/10.1002/advs.202472244 (2025).

  12. Prinz, A., Bucher, D. & Marder, E. Nat. Neurosci. 7, 1345–1352 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H. & Lakatos, P. Curr. Opin. Neurobiol. 20, 172–176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haşegan, D. et al. Front. Comput. Neurosci. 16, 1017284 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. McDougal, R. A., Hines, M. L. & Lytton, W. W. Front. Neuroinform. 7, 28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Neymotin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neymotin, S.A., Hazan, H. Differentiable simulation expands frontiers for biophysical neural models. Nat Methods 22, 2503–2505 (2025). https://doi.org/10.1038/s41592-025-02933-7

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-025-02933-7

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics