Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methods to analyze cell migration data: fundamentals and practical guidelines

Abstract

Cell migration assays provide invaluable insights into fundamental biological processes. In a companion Review, we describe commercial and custom in vitro and in vivo assays to measure cell migration and provide guidelines on how to select the most appropriate assay for a given biological question. Here, we describe the fundamental principles of how to compute—from the raw data generated by these assays—quantitative cell migration parameters that help determine the biophysical nature of the cell migration, such as cell speed, mean-squared displacement, diffusivity, persistence, speed and anisotropy, and how to quantify cell heterogeneity, with practical guidance. We also describe new imaging and computational technologies, including AI-based methods, which have helped establish fast, robust and accurate tracking of cells and quantification of cell migration. Taken together, these Reviews offer practical guidance for cell migration assays from conception to analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct-versus-indirect measurements of cell migration.
Fig. 2: Characterization of cell trajectories and associated metrics.
Fig. 3: MSD for trajectory characterization.
Fig. 4: Indirect analysis of cell migration via common assays.

Similar content being viewed by others

References

  1. Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005.

    PubMed  Google Scholar 

  2. Fowell, D. J. & Kim, M. The spatio-temporal control of effector T cell migration. Nat. Rev. Immunol. 21, 582–596 (2021).

    PubMed  PubMed Central  Google Scholar 

  3. Horwitz, R. & Webb, D. Cell migration. Curr. Biol. 13, R756–R759 (2003).

    PubMed  Google Scholar 

  4. Scarpa, E. & Mayor, R. Collective cell migration in development. J. Cell Biol. 212, 143–155 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Kurosaka, S. & Kashina, A. Cell biology of embryonic migration. Birth Defects Res. C. Embryo Today 84, 102–122 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    PubMed  Google Scholar 

  7. Arwert, E. N., Hoste, E. & Watt, F. M. Epithelial stem cells, wound healing and cancer. Nat. Rev. Cancer 12, 170–180 (2012).

    PubMed  Google Scholar 

  8. Coulombe, P. A. Wound epithelialization: accelerating the pace of discovery. J. Invest. Dermatol. 121, 219–230 (2003).

    PubMed  Google Scholar 

  9. Aragona, M. et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 8, 14684 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    PubMed  Google Scholar 

  11. Yamaguchi, H., Wyckoff, J. & Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol. 17, 559–564 (2005).

    PubMed  Google Scholar 

  12. Castaneda, M., den Hollander, P., Kuburich, N. A., Rosen, J. M. & Mani, S. A. Mechanisms of cancer metastasis. Semin. Cancer Biol. 87, 17–31 (2022).

    PubMed  Google Scholar 

  13. Popper, H. H. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 35, 75–91 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Jones, D. H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    PubMed  Google Scholar 

  15. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    PubMed  PubMed Central  Google Scholar 

  16. Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5, 28 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Mackay, C. R. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat. Immunol. 9, 988–998 (2008).

    PubMed  Google Scholar 

  18. Min, H. Y. & Lee, H. Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 54, 1670–1694 (2022).

    PubMed  PubMed Central  Google Scholar 

  19. Du, W. et al. Selecting the optimal cell migration assay: fundamentals and practical guidelines. Nat. Methods https://doi.org/10.1038/s41592-025-02890-1 (2025).

  20. Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12, 598–604 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Wu, P. H., Giri, A. & Wirtz, D. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat. Protoc. 10, 517–527 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Giri, A. et al. The Arp2/3 complex mediates multigeneration dendritic protrusions for efficient 3-dimensional cancer cell migration. FASEB J. https://doi.org/10.1096/fj.12-224352 (2013).

  23. Jayatilaka, H. et al. EB1 and cytoplasmic dynein mediate protrusion dynamics for efficient 3-dimensional cell migration. FASEB J. https://doi.org/10.1096/fj.201700444RR (2018).

  24. Khatau, S. B. et al. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2, 488 (2012).

  25. Wu, P. H., Giri, A., Sun, S. X. & Wirtz, D. Three-dimensional cell migration does not follow a random walk. Proc. Natl Acad. Sci. USA 111, 3949–3954 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Stokes, C. L. & Lauffenburger, D. A. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991).

    PubMed  Google Scholar 

  27. Stokes, C. L., Lauffenburger, D. A. & Williams, S. K. Migration of individual microvessel endothelial cells: Stochastic model and parameter measurement. J. Cell Sci. 99, 419–430 (1991).

    PubMed  Google Scholar 

  28. Chen, H. C. Boyden chamber assay. Methods Mol. Biol. 294, 15–22 (2005).

    PubMed  Google Scholar 

  29. Justus, C. R., Marie, M. A., Sanderlin, E. J. & Yang, L. V. Transwell in vitro cell migration and invasion assays. Methods Mol. Biol. 2644, 349–359 (2023).

    PubMed  PubMed Central  Google Scholar 

  30. Prolo, L. M. et al. Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Sci. Rep. 9, 14020 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Kendirli, A. et al. A genome-wide in vivo CRISPR screen identifies essential regulators of T cell migration to the CNS in a multiple sclerosis model. Nat. Neurosci. 26, 1713–1725 (2023).

    PubMed  PubMed Central  Google Scholar 

  32. Ammann, K. R., DeCook, K. J., Li, M. & Slepian, M. J. Migration versus proliferation as contributor to in vitro wound healing of vascular endothelial and smooth muscle cells. Exp. Cell. Res. 376, 58–66 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Grada, A., Otero-Vinas, M., Prieto-Castrillo, F., Obagi, Z. & Falanga, V. Research techniques made simple: analysis of collective cell migration using the wound healing assay. J. Invest. Dermatol. 137, e11–e16 (2017).

    PubMed  Google Scholar 

  34. Keese, C. R., Wegener, J., Walker, S. R. & Giaever, I. Electrical wound-healing assay for cells in vitro. Proc. Natl Acad. Sci. USA 101, 1554–1559 (2004).

    PubMed  PubMed Central  Google Scholar 

  35. Riahi, R., Yang, Y., Zhang, D. D. & Wong, P. K. Advances in wound-healing assays for probing collective cell migration. J. Lab Autom. 17, 59–65 (2012).

    PubMed  Google Scholar 

  36. Maška, M. et al. The Cell Tracking Challenge: 10 years of objective benchmarking. Nat. Methods 20, 1010–1020 (2023).

    PubMed  PubMed Central  Google Scholar 

  37. Ulman, V. et al. An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141–1152 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    PubMed  Google Scholar 

  39. Uka, A., Tare, A., Polisi, X. & Panci, I. FASTER R-CNN for cell counting in low contrast microscopic images. in Proceedings of the 2020 International Conference on Computing, Networking, Telecommunications and Engineering Sciences Applications, CoNTESA 2020 64–69 https://doi.org/10.1109/CONTESA50436.2020.9302852 (2020).

  40. Buggenthin, F. et al. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC Bioinformatics 14, 297 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Ershov, D. et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 19, 829–832 (2022).

    PubMed  Google Scholar 

  42. Shim, C. et al. CellTrackVis: interactive browser-based visualization for analyzing cell trajectories and lineages. BMC Bioinformatics 24, 124 (2023).

    PubMed  PubMed Central  Google Scholar 

  43. Collins, T. J. ImageJ for microscopy. Biotechniques 43, 25–30 (2007).

    PubMed  Google Scholar 

  44. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Maity, D. et al. Profiling dynamic patterns of single-cell motility. Adv. Sci. 11, 2400918 (2024).

    Google Scholar 

  46. Emami, N., Sedaei, Z. & Ferdousi, R. Computerized cell tracking: current methods, tools and challenges. Vis. Informatics 5, 1–13 (2021).

    Google Scholar 

  47. Wu, P. -H. et al. Single-cell morphology encodes metastatic potential. Sci. Adv. 6, eaaw6938 (2020).

    PubMed  PubMed Central  Google Scholar 

  48. McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol https://doi.org/10.1371/journal.pbio.2005970 (2018).

  49. Magidson, V. & Khodjakov, A. Circumventing photodamage in live-cell microscopy. Methods Cell. Biol. 114, 545–560 (2013).

    PubMed  Google Scholar 

  50. Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).

    PubMed  Google Scholar 

  51. Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39, 1700003 (2017).

    Google Scholar 

  52. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2020).

    PubMed  Google Scholar 

  53. Copied TextX Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science Vol. 11071, 265–273 (Springer, 2018).

  54. Han, K. S. et al. qMAP enabled microanatomical mapping of human skin aging. Preprint at bioRxiv https://doi.org/10.1101/2024.04.03.588011 (2024).

  55. Cheezum, M. K., Walker, W. F. & Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001).

    PubMed  PubMed Central  Google Scholar 

  56. Wen, C. et al. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images. Elife 10, e59187 (2021).

  57. Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 2604–2609 (2003).

    PubMed  PubMed Central  Google Scholar 

  58. Lau, D. et al. Intravital imaging of adoptive T-cell morphology, mobility and trafficking following immune checkpoint inhibition in a mouse melanoma model. Front. Immunol. 11, 538523 (2020).

    Google Scholar 

  59. Wiggins, L. et al. The CellPhe toolkit for cell phenotyping using time-lapse imaging and pattern recognition. Nat. Commun. 14, 1854 (2023).

  60. Shannon, M. J., Eisman, S. E., Lowe, A. R., Sloan, T. F. W. & Mace, E. M. cellPLATO – an unsupervised method for identifying cell behaviour in heterogeneous cell trajectory data. J. Cell Sci. 137, jcs261887 (2024).

  61. Freckmann, E. C. et al. Traject3D allows label-free identification of distinct co-occurring phenotypes within 3D culture by live imaging. Nat. Commun. 13, 5317 (2022).

  62. GitHub. quantixed/TrackMateR: analysis of TrackMate XML outputs in R. https://github.com/quantixed/TrackMateR

  63. Wortel, I. M. N. et al. CelltrackR: An R package for fast and flexible analysis of immune cell migration data. Immunoinformatics 1–2, 100003 (2021).

    PubMed  Google Scholar 

  64. Gómez-De-Mariscal, E. et al. CellTracksColab is a platform that enables compilation, analysis, and exploration of cell tracking data. PLoS Biol. 22, e3002740 (2024).

    PubMed  PubMed Central  Google Scholar 

  65. Masuzzo, P., Van Troys, M., Ampe, C. & Martens, L. Taking aim at moving targets in computational cell migration. Trends Cell Biol. 26, 88–110 (2016).

    PubMed  Google Scholar 

  66. Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).

    PubMed  Google Scholar 

  67. Wu, P. H. et al. Particle tracking microrheology of cancer cells in living subjects. Mater. Today 39, 98–109 (2020).

    Google Scholar 

  68. Savin, T. & Doyle, P. S. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005).

    PubMed  Google Scholar 

  69. Wu, P. -H., Arce, S. H., Burney, P. R. & Tseng, Y. A novel approach to high accuracy of video-based microrheology. Biophys. J. 96, 5103–5111 (2009).

    PubMed  PubMed Central  Google Scholar 

  70. Metzner, C. et al. Superstatistical analysis and modelling of heterogeneous random walks. Nat. Commun. 6, 7516 (2015).

    PubMed  Google Scholar 

  71. Lan, T. et al. Decomposition of cell activities revealing the role of the cell cycle in driving biofunctional heterogeneity. Sci. Rep. 11, 23431 (2021).

  72. Phillip, J. M. et al. Fractional re-distribution among cell motility states during ageing. Commun. Biol. 4, 81 (2021).

  73. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    PubMed  Google Scholar 

  74. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    PubMed  Google Scholar 

  75. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    PubMed  Google Scholar 

  76. Lee, M. H. et al. Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. Biophys. J. 102, 2731–2741 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. Trepat, X. et al. Physical forces during collective cell migration. Nat. Phys. 5, 426–430 (2009).

    Google Scholar 

  78. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011).

    PubMed  PubMed Central  Google Scholar 

  79. Dieterich, P., Klages, R., Preuss, R. & Schwab, A. Anomalous dynamics of cell migration. Proc. Natl Acad. Sci. USA 105, 459–463 (2008).

    PubMed  PubMed Central  Google Scholar 

  80. Tranquillo, R. T., Lauffenburger, D. A. & Zigmond, S. H. A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J. Cell Biol. 106, 303–309 (1988).

    PubMed  Google Scholar 

  81. Wu, P. -H., Gilkes, D. M. & Wirtz, D. The biophysics of 3D cell migration. Annu. Rev. Biophys. 47, 549–567 (2018).

    Google Scholar 

  82. Takagi, H., Sato, M. J., Yanagida, T. & Ueda, M. Functional analysis of spontaneous cell movement under different physiological conditions. PLoS ONE 3, e2648 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. Selmeczi, D., Mosler, S., Hagedorn, P. H., Larsen, N. B. & Flyvbjerg, H. Cell motility as persistent random motion: theories from experiments. Biophys. J. 89, 912–931 (2005).

    PubMed  PubMed Central  Google Scholar 

  84. Czirok, A., Schlett, K., Madarasz, E. & Vicsek, T. Exponential distribution of locomotion activity in cell cultures. Phys. Rev. Lett. 81, 3038–3041 (1999).

    Google Scholar 

  85. Campos, D., Méndez, V. & Llopis, I. Persistent random motion: uncovering cell migration dynamics. J. Theor. Biol. 267, 526–534 (2010).

    PubMed  Google Scholar 

  86. Harris, T. H. et al. Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486, 545–548 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. Huda, S. et al. Lévy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nat. Commun. 9, 4539 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Mantegna, R. N. & Stanley, H. E. Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 2946 (1994).

    PubMed  Google Scholar 

  89. Godet, I. et al. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat. Commun. 10, 4862 (2019).

  90. Nair, P. R. et al. MLL1 regulates cytokine-driven cell migration and metastasis. Sci. Adv. 10, eadk0785 (2024).

  91. Du, W. et al. High-motility pro-tumorigenic monocytes drive macrophage enrichment in the tumor microenvironment. Preprint at bioRxiv https://doi.org/10.1101/2024.07.16.603739 (2024).

  92. SenGupta, S., Parent, C. A. & Bear, J. E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 22, 529–547 (2021).

    PubMed  PubMed Central  Google Scholar 

  93. Kimmel, J. C., Chang, A. Y., Brack, A. S. & Marshall, W. F. Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance. PLoS Comput. Biol. 14, e1005927 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  95. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  96. Ascione, F. et al. Comparison between fibroblast wound healing and cell random migration assays in vitro. Exp. Cell. Res. 347, 123–132 (2016).

    PubMed  Google Scholar 

  97. Tremel, A. et al. Cell migration and proliferation during monolayer formation and wound healing. Chem. Eng. Sci. 64, 247–253 (2009).

    Google Scholar 

  98. Zordan, M. D., Mill, C. P., Riese, D. J. & Leary, J. F. A high throughput, interactive imaging, bright-field wound healing assay. Cytometry A 79, 227–232 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Jonkman, J. E. N. et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adh. Migr. 8, 440–451 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Kauanova, S., Urazbayev, A. & Vorobjev, I. The frequent sampling of wound scratch assay reveals the ‘opportunity’ window for quantitative evaluation of cell motility-impeding drugs. Front. Cell Dev. Biol. 9, 640972 (2021).

  101. Main, K. A., Mikelis, C. M. & Doçi, C. L. In vitro wound healing assays to investigate epidermal migration. Methods Mol. Biol. 2109, 147–154 (2020).

    PubMed  Google Scholar 

  102. Chung, H. H., Bellefeuille, S. D., Miller, H. N. & Gaborski, T. R. Extended live-tracking and quantitative characterization of wound healing and cell migration with SiR-Hoechst. Exp. Cell. Res. 373, 198–210 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Bise, R., Kanade, T., Yin, Z. & Huh, S. Il. Automatic cell tracking applied to analysis of cell migration in wound healing assay. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 6174–6179 (2011).

    PubMed  Google Scholar 

  104. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    PubMed  PubMed Central  Google Scholar 

  105. Hulkower, K. I. & Herber, R. L. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3, 107–124 (2011).

    PubMed  PubMed Central  Google Scholar 

  106. Pijuan, J. et al. In vitro cell migration, invasion, and adhesion assays: from cell imaging to data analysis. Front. Cell Dev. Biol. 7, 449183 (2019).

    Google Scholar 

  107. Justus, C. R., Leffler, N., Ruiz-Echevarria, M. & Yang, L. V. In vitro cell migration and invasion assays. J. Vis. Exp. https://doi.org/10.3791/51046 (2014).

  108. O’brien, J., Hayder, H. & Peng, C. Automated quantification and analysis of cell counting procedures using ImageJ plugins. J. Vis. Exp. 2016, e54719 (2016).

    Google Scholar 

  109. Bird, C. & Kirstein, S. Real-time, label-free monitoring of cellular invasion and migration with the xCELLigence system. Nat. Methods https://doi.org/10.1038/nmeth.f.263 (2009).

  110. Vinci, M. et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 29 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Russo, G. C. et al. E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer. Oncogene 43, 1445–1462 (2024).

    PubMed  Google Scholar 

  112. Lee, M. H. et al. Multi-compartment tumor organoids. Mater. Today 61, 104–116 (2022).

    Google Scholar 

  113. Puls, T. J. et al. Development of a novel 3D tumor-tissue invasion model for high-throughput, high-content phenotypic drug screening. Sci. Rep. 8, 13039 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Randriamanantsoa, S. et al. Spatiotemporal dynamics of self-organized branching in pancreas-derived organoids. Nat. Commun. 13, 5219 (2022).

  115. Goranci-Buzhala, G. et al. Rapid and efficient invasion assay of glioblastoma in human brain organoids. Cell Rep. 31, 107738 (2020).

  116. Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309–324 (2009).

    PubMed  Google Scholar 

  117. Vinci, M., Box, C. & Eccles, S. A. Three-dimensional (3D) tumor spheroid invasion assay. J. Vis. Exp. 2015, 52686 (2015).

    Google Scholar 

  118. Chen, Z. et al. Automated evaluation of tumor spheroid behavior in 3D culture using deep learning-based recognition. Biomaterials 272, 120770 (2021).

    PubMed  Google Scholar 

  119. Heiss, J. & Tavana, H. Automated analysis of extracellular matrix invasion of cancer cells from tumor spheroids. ACS Meas. Sci. Au 4, 260–266 (2024).

    PubMed  Google Scholar 

  120. Konen, J. et al. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun. 8, 15078 (2017).

  121. Valencia, A. M. J. et al. Collective cancer cell invasion induced by coordinated contractile stresses. Oncotarget 6, 43438–43451 (2015).

  122. Kim, B. J. & Wu, M. Microfluidics for mammalian cell chemotaxis. Ann. Biomed. Eng. 40, 1316–1327 (2012).

    PubMed  Google Scholar 

  123. Chen, Y. C. et al. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 5, 9980 (2015).

  124. Yankaskas, C. L. et al. A microfluidic assay for the quantification of the metastatic propensity of breast cancer specimens. Nat. Biomed. Eng. 3, 452–465 (2019).

    PubMed  PubMed Central  Google Scholar 

  125. Stroka, K. M. et al. Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623 (2014).

    PubMed  PubMed Central  Google Scholar 

  126. Jiang, X., Bruzewicz, D. A., Wong, A. P., Piel, M. & Whitesides, G. M. Directing cell migration with asymmetric micropatterns. Proc. Natl Acad. Sci. USA 102, 975–978 (2005).

    PubMed  PubMed Central  Google Scholar 

  127. Bhattacharya, S. et al. A high-throughput microfabricated platform for rapid quantification of metastatic potential. Sci. Adv. 10, eadk0015 (2024).

  128. Wu, J., Wu, X. & Lin, F. Recent developments in microfluidics-based chemotaxis studies. Lab Chip 13, 2484–2499 (2013).

    PubMed  Google Scholar 

  129. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    PubMed  Google Scholar 

  130. Li, J. & Lin, F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 21, 489–497 (2011).

    PubMed  Google Scholar 

  131. Sun, Y. S. Studying electrotaxis in microfluidic devices. Sensors 17, 2048 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Li, Y. et al. Cell migration microfluidics for electrotaxis-based heterogeneity study of lung cancer cells. Biosens. Bioelectron. 89, 837–845 (2017).

    PubMed  Google Scholar 

  133. Sunyer, R. & Trepat, X. Durotaxis. Curr. Biol. 30, R383–R387 (2020).

    PubMed  Google Scholar 

  134. Style, R. W. et al. Patterning droplets with durotaxis. Proc. Natl Acad. Sci. USA 110, 12541–12544 (2013).

    PubMed  PubMed Central  Google Scholar 

  135. Fanfone, D. et al. Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness. Elife 11, e73150 (2022).

  136. Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer 17, 131–140 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Zengel, P. et al. μ-slide chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol. 12, 21 (2011).

  138. Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).

    PubMed  Google Scholar 

  139. Sacan, A., Ferhatosmanoglu, H. & Coskun, H. CellTrack: an open-source software for cell tracking and motility analysis. Bioinformatics 24, 1647–1649 (2008).

    PubMed  Google Scholar 

  140. Hu, T., Xu, S., Wei, L., Zhang, X. & Wang, X. CellTracker: an automated toolbox for single-cell segmentation and tracking of time-lapse microscopy images. Bioinformatics 37, 285–287 (2021).

    PubMed  Google Scholar 

  141. Kamentsky, L. et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179–1180 (2011).

    PubMed  PubMed Central  Google Scholar 

  142. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).

    PubMed  PubMed Central  Google Scholar 

  143. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    PubMed  PubMed Central  Google Scholar 

  144. Aragaki, H., Ogoh, K., Kondo, Y. & Aoki, K. LIM Tracker: a software package for cell tracking and analysis with advanced interactivity. Sci. Rep. 12, 2702 (2022).

    PubMed  PubMed Central  Google Scholar 

  145. Lugagne, J. -B., Lin, H. & Dunlop, M. J. DeLTA: automated cell segmentation, tracking, and lineage reconstruction using deep learning. PLoS Comput. Biol. 16, e1007673 (2020).

    PubMed  PubMed Central  Google Scholar 

  146. Zhao, Y. et al. HFM-Tracker: a cell tracking algorithm based on hybrid feature matching. Analyst 149, 2629–2636 (2024).

    PubMed  Google Scholar 

  147. Deforet, M. et al. Automated velocity mapping of migrating cell populations (AVeMap). Nat. Methods 9, 1081–1083 (2012).

    PubMed  Google Scholar 

  148. Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).

    PubMed  Google Scholar 

  149. Cordelières, F. P. et al. Automated cell tracking and analysis in phase-contrast videos (iTrack4U): development of Java software based on combined mean-shift processes. PLoS ONE 8, e81266 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. Masuzzo, P. et al. CellMissy: a tool for management, storage and analysis of cell migration data produced in wound healing-like assays. Bioinformatics 29, 2661–2663 (2013).

    PubMed  PubMed Central  Google Scholar 

  151. Gebäck, T., Schulz, M. M. P., Koumoutsakos, P. & Detmar, M. TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46, 265–274 (2009).

    PubMed  Google Scholar 

  152. Garcia-Fossa, F., Gaal, V. & de Jesus, M. B. PyScratch: an ease of use tool for analysis of scratch assays. Comput. Methods Programs Biomed. 193, 105476 (2020).

    PubMed  Google Scholar 

  153. Cortesi, M., Pasini, A., Tesei, A. & Giordano, E. AIM: a computational tool for the automatic quantification of scratch wound healing assays. Appl. Sci. 7, 1237 (2017).

    Google Scholar 

  154. Li, X., Yang, H., Huang, H. & Zhu, T. CELLCOUNTER: novel open-source software for counting cell migration and invasion in vitro. Biomed. Res. Int. 2014, 863564 (2014).

    PubMed  PubMed Central  Google Scholar 

  155. Cortesi, M. et al. I-AbACUS: a reliable software tool for the semi-automatic analysis of invasion and migration Transwell assays. Sci. Rep. 8, 3814 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Chen, W. et al. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately. J. Vis. Exp. https://doi.org/10.3791/51639 (2014).

  157. Piccinini, F. AnaSP: a software suite for automatic image analysis of multicellular spheroids. Comput. Methods Prog. Biomed. 119, 43–52 (2015).

    Google Scholar 

  158. Akshay, A. et al. SpheroScan: a user-friendly deep learning tool for spheroid image analysis. Gigascience 12, giad082 (2022).

  159. Park, T. et al. Development of a deep learning based image processing tool for enhanced organoid analysis. Sci. Rep. 13, 19841 (2023).

  160. Matthews, J. M. et al. OrganoID: a versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLoS Comput. Biol. 18, e1010584 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the following sources of support: U54AR081774 (to D.W.), U54CA268083 (to D.W.), R01CA300052 (to D.W.), UG3CA275681 (to P.-H.W.) and UH3CA275681 (to P.-H.W.), all from the National Cancer Institute; R35-GM157099 (to J.M.P.) from the National Institute of General Medical Sciences; and an American Federation for Aging Research Glenn Foundation Junior Faculty Award (to J.M.P.).

Author information

Authors and Affiliations

Authors

Contributions

D.W., P.-H.W. and J.M.P. conceived the outline. P.-H.W., J.M.P., W.D., A.F., P.R.N. and D.W. wrote the paper.

Corresponding authors

Correspondence to Pei-Hsun Wu, Jude M. Phillip or Denis Wirtz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Li Yang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Mathematical definitions and common metrics used to analyze cell trajectories.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PH., Phillip, J.M., Du, W. et al. Methods to analyze cell migration data: fundamentals and practical guidelines. Nat Methods 23, 43–55 (2026). https://doi.org/10.1038/s41592-025-02935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-025-02935-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing