Supplementary Figure 4: Laminar distribution of mCherry expression and lack of expression in dorsal root ganglia in PdynCre and nNOSCreERT2 mice that had received intraspinal injections of AAV2.flex.hM3Dq-mCherry.
From: Circuit dissection of the role of somatostatin in itch and pain

A-D show transverse sections through the rostral part of the L3 segment of a PdynCre mouse (A,B) and through the caudal part of L3 of a nNOSCreERT2 mouse (C,D). In both genotypes, mCherry-positive cells form a dense band in the superficial dorsal horn, and there are scattered neurons in deeper laminae of the dorsal horn, consistent with the distribution of dynorphin- and nNOS-expressing neurons. Images to the right (B, D) show mCherry-immunoreactivity superimposed on a dark-field image, which indicates the location of the gray matter. Similar results were obtained from 5 animals of each genotype. E-J show scans of L4 dorsal root ganglia from the right side (ipsilateral to the intraspinal injection) of PdynCre (E-G) and nNOSCreERT2 (H-J) mice. In each case, immunostaining for mCherry is shown on the left, a dark-field image in the middle and a merged image on the right. No mCherry-positive cells were observed in the DRGs in either strain. Scale bar = 200 μm. Similar results were obtained from 4 nNOSCreERT2 animals and from 2 PdynCre animals. The time spent licking the calf in response to intradermal injection of chloroquine (100 μg) was reduced following chemogenetic activation (CNO) in PdynCre mice (K), whereas there was no effect on responses in nNOSCreERT2 animals (L). Significant differences were assessed using two-sided unpaired Student’s t-tests (t21 = 2.82, *p = 0.0103; ns not significant, t23 = 1.2, p = 0.2422). Data represent means ± SEM (n=11, 12, 12, and 13 animals, for PdynCre treated with CNO and vehicle and for nNOSCreERT2 treated with CNO and vehicle, respectively).