Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery

An Author Correction to this article was published on 16 December 2024

This article has been updated

Abstract

Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells. Here, we summarize the most promising and robust technologies in these areas, discuss their strengths and limitations and discuss key computational approaches for analysis of these complex datasets. We highlight how data sharing and integration, documentation, visualization and benchmarking of results contribute to transparency, reproducibility, collaboration and democratization in neuroscience, and discuss needs and opportunities for future technology development and analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological considerations: cellular architecture and research questions.
Fig. 2: Outline of key considerations involved in designing high-throughput single-cell and ST studies.
Fig. 3: Outline of computational design of high-throughput single-cell or single-nucleus and spatial omics studies.
Fig. 4: Epigenomic technologies.

Similar content being viewed by others

Change history

References

  1. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, S. S. et al. Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types. Nat. Commun. 15, 563 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun, N. et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease. Nat. Neurosci. 26, 970–982 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cain, A. et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, C. N., Shin, D., Wang, A. & Nowakowski, T. J. Spatiotemporal molecular dynamics of the developing human thalamus. Science 382, eadf9941 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pineda, S. S. et al. Single-cell dissection of the human motor and prefrontal cortices in ALS and FTLD. Cell 187, 1971–1989 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Green, G. S. et al. Cellular communities reveal trajectories of brain ageing and Alzheimer’s disease. Nature https://doi.org/10.1038/s41586-024-07871-6 (2024).

  9. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis, A., Gao, R. & Navin, N. E. SCOPIT: sample size calculations for single-cell sequencing experiments. BMC Bioinformatics 20, 566 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schmid, K. T. et al. scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies. Nat. Commun. 12, 6625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Su, K., Wu, Z. & Wu, H. Simulation, power evaluation and sample size recommendation for single-cell RNA-seq. Bioinformatics 36, 4860–4868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phipson, B. et al. Propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, Y. et al. scClassify: sample size estimation and multiscale classification of cells using single and multiple reference. Mol. Syst. Biol. 16, e9389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeon, H. et al. Statistical power analysis for designing bulk, single-cell, and spatial transcriptomics experiments: review, tutorial, and perspectives. Biomolecules 13, 221 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ryaboshapkina, M. & Azzu, V. Sample size calculation for a NanoString GeoMx spatial transcriptomics experiment to study predictors of fibrosis progression in non-alcoholic fatty liver disease. Sci. Rep. 13, 8943 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colonna, M. et al. Implementation and validation of single-cell genomics experiments in neuroscience. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01814-0 (2024).

  18. Zhang, Y. et al. Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome. Comput. Struct. Biotechnol. J. 21, 176–184 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Im, Y. & Kim, Y. A comprehensive overview of RNA deconvolution methods and their application. Mol. Cells 46, 99–105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Charytonowicz, D., Brody, R. & Sebra, R. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Nat. Commun. 14, 1350 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y. et al. Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis. Nat. Commun. 13, 6735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao, J. et al. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat. Commun. 13, 6498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heimberg, G., Bhatnagar, R., El-Samad, H. & Thomson, M. Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell Syst. 2, 239–250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Boyce, R. W., Dorph-Petersen, K. -A., Lyck, L. & Gundersen, H. J. G. Design-based stereology: introduction to basic concepts and practical approaches for estimation of cell number. Toxicol. Pathol. 38, 1011–1025 (2010).

    Article  PubMed  Google Scholar 

  26. Adameyko, I. et al. Applying single-cell/nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01827-9 (2024).

  27. Yu, L., Cao, Y., Yang, J. Y. H. & Yang, P. Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data. Genome Biol. 23, 49 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swapna, L. S., Huang, M. & Li, Y. GTM-decon: guided-topic modeling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes. Genome Biol. 24, 190 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, S., Yang, L., Yang, J., Lin, Z. & Ng, M. K. Dimensionality reduction for single cell RNA sequencing data using constrained robust non-negative matrix factorization. NAR Genom. Bioinform. 2, lqaa064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cortal, A., Martignetti, L., Six, E. & Rausell, A. Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID. Nat. Biotechnol. 39, 1095–1102 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bayraktar, O. A. et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat. Neurosci. 23, 500–509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shi, H. et al. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 622, 552–561 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Langlieb, J. et al. The molecular cytoarchitecture of the adult mouse brain. Nature 624, 333–342 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stanley, G., Gokce, O., Malenka, R. C., Südhof, T. C. & Quake, S. R. Continuous and discrete neuron types of the adult murine striatum. Neuron 105, 688–699 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Muñoz-Manchado, A. B. et al. Diversity of interneurons in the dorsal striatum revealed by single-cell RNA sequencing and PatchSeq. Cell Rep. 24, 2179–2190 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Ghazanfar, S., Guibentif, C. & Marioni, J. C. Stabilized mosaic single-cell data integration using unshared features. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01766-z (2023).

  48. Mages, S. et al. TACCO unifies annotation transfer and decomposition of cell identities for single-cell and spatial omics. Nat. Biotechnol. 41, 1465–1473 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat. Biotechnol. 40, 74–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662–670 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Baldoni, P. L. et al. Dividing out quantification uncertainty allows efficient assessment of differential transcript expression with edgeR. Nucleic Acids Res. 52, e13 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoffman, G. E. et al. Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet. Preprint at bioRxiv https://doi.org/10.1101/2023.03.17.533005 (2023).

  57. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gabitto, M. I. et al. Integrated multimodal cell atlas of Alzheimer’s disease. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01774-5 (2024).

  59. Zeng, H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease. Nat. Neurosci. 26, 430–446 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 185, 1665–1681 (2020).

    Article  Google Scholar 

  61. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, X. et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Condylis, C. et al. Dense functional and molecular readout of a circuit hub in sensory cortex. Science 375, eabl5981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, Q. et al. Multimodal charting of molecular and functional cell states via in situ electro-sequencing. Cell 186, 2002–2017 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu, T., Ang, C. E. & Zhuang, X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 185, 4448–4464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Llorens-Bobadilla, E. et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat. Biotechnol. 41, 1085–1088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sans, M. et al. Integrated spatial transcriptomics and lipidomics of precursor lesions of pancreatic cancer identifies enrichment of long chain sulfatide biosynthesis as an early metabolic alteration. Preprint at bioRxiv https://doi.org/10.1101/2023.08.14.553002 (2023).

  74. Vicari, M. et al. Spatial multimodal analysis of transcriptomes and metabolomes in tissues. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01937-y (2023).

  75. Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. Cell 181, 936–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Clifton, K. et al. STalign: alignment of spatial transcriptomics data using diffeomorphic metric mapping. Nat. Commun. 14, 8123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ortiz, C. et al. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumar, K. et al. Subcortical brain alterations in carriers of genomic copy number variants. Am. J. Psychiatry 180, 685–698 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Moreau, C. A. et al. Brain functional connectivity mirrors genetic pleiotropy in psychiatric conditions. Brain 146, 1686–1696 (2023).

    Article  PubMed  Google Scholar 

  80. Bruschi, N., Boffa, G. & Inglese, M. Ultra-high-field 7-T MRI in multiple sclerosis and other demyelinating diseases: from pathology to clinical practice. Eur. Radiol. Exp. 4, 59 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tang, Z. et al. Search and match across spatial omics samples at single-cell resolution. Nat. Methods 21, 1818–1829 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xia, C. -R., Cao, Z. -J., Tu, X. -M. & Gao, G. Spatial-linked alignment tool (SLAT) for aligning heterogenous slices. Nat. Commun. 14, 7236 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hofmann, A. et al. Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis. Acta Neuropathol. 146, 707–724 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sucksdorff, M. et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 143, 3318–3330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Fang, R. et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 377, 56–62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu, S. J. et al. Cortical somatostatin interneuron subtypes form cell-type-specific circuits. Neuron 111, 2675–2692 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 53, 1698–1711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tehranchi, A. et al. Fine-mapping cis-regulatory variants in diverse human populations. Elife 8, e39595 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kosoy, R. et al. Genetics of the human microglia regulome refines Alzheimer’s disease risk loci. Nat. Genet. 54, 1145–1154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gontarz, P. et al. Comparison of differential accessibility analysis strategies for ATAC-seq data. Sci. Rep. 10, 10150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Macneil, L. T. & Walhout, A. J. M. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res. 21, 645–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17, 147–154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bravo González-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16, 397–400 (2019).

    Article  PubMed  Google Scholar 

  105. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kartha, V. K. et al. Functional inference of gene regulation using single-cell multi-omics. Cell Genom. 2, 100166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bravo González-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lynch, A. W. et al. MIRA: joint regulatory modeling of multimodal expression and chromatin accessibility in single cells. Nat. Methods 19, 1097–1108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xuan, C. et al. scBPGRN: integrating single-cell multi-omics data to construct gene regulatory networks based on BP neural network. Comput. Biol. Med. 151, 106249 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Schmid, M., Durussel, T. & Laemmli, U. K. ChIC and ChEC; genomic mapping of chromatin proteins. Mol. Cell 16, 147–157 (2004).

    CAS  PubMed  Google Scholar 

  118. Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Wu, S. J. et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat. Biotechnol. 39, 819–824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Handa, T. et al. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input. Nat. Protoc. 15, 3334–3360 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bartosovic, M. & Castelo-Branco, G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat. Biotechnol. 41, 794–805 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Gopalan, S., Wang, Y., Harper, N. W., Garber, M. & Fazzio, T. G. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol. Cell 81, 4736–4746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tedesco, M. et al. Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nat. Biotechnol. 40, 235–244 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Meers, M. P., Llagas, G., Janssens, D. H., Codomo, C. A. & Henikoff, S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat. Biotechnol. 41, 708–716 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Li, C., Virgilio, M. C., Collins, K. L. & Welch, J. D. Multi-omic single-cell velocity models epigenome-transcriptome interactions and improves cell fate prediction. Nat. Biotechnol. 41, 387–398 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Noack, F. et al. Multimodal profiling of the transcriptional regulatory landscape of the developing mouse cortex identifies Neurog2 as a key epigenome remodeler. Nat. Neurosci. 25, 154–167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zuin, J. et al. Nonlinear control of transcription through enhancer-promoter interactions. Nature 604, 571–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tan, L., Xing, D., Chang, C. -H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tan, L. et al. Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell 184, 741–758 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Zhou, T. et al. GAGE-seq concurrently profiles multiscale 3D genome organization and gene expression in single cells. Nat. Genet. https://doi.org/10.1038/s41588-024-01745-3 (2024).

  136. Wu, H. & Zhang, Y. Charting oxidized methylcytosines at base resolution. Nat. Struct. Mol. Biol. 22, 656–661 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: in the right place at the right time. Science 361, 1336–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Iqbal, W. & Zhou, W. Computational methods for single-cell DNA methylome analysis. Genomics Proteomics Bioinformatics 21, 48–66 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Luo, C. et al. Robust single-cell DNA methylome profiling with snmC-seq2. Nat. Commun. 9, 3824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lee, D. -S. et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 16, 999–1006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genom. 2, 100107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fabyanic, E. B. et al. Quantitative single cell 5hmC sequencing reveals non-canonical gene regulation by non-CG hydroxymethylation. Preprint at bioRxiv https://doi.org/10.1101/2021.03.23.434325 (2021).

  146. Nichols, R. V. et al. High-throughput robust single-cell DNA methylation profiling with sciMETv2. Nat. Commun. 13, 7627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Abdulhay, N. J. et al. Massively multiplex single-molecule oligonucleosome footprinting. Elife 9, e59404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Shipony, Z. et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319–327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, Y. et al. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res. 29, 1329–1342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009–1014 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).

    Article  CAS  Google Scholar 

  154. Isaac, R. S. et al. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA. Nat. Struct. Mol. Biol. 31, 568–577 (2024).

    Article  CAS  PubMed  Google Scholar 

  155. Abdulhay, N. J. et al. Nucleosome density shapes kilobase-scale regulation by a mammalian chromatin remodeler. Nat. Struct. Mol. Biol. 30, 1571–1581 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Marconato, L. et al. SpatialData: an open and universal data framework for spatial omics. Nat. Methods https://doi.org/10.1038/s41592-024-02212-x (2024).

  157. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kim, S. Ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods 22, 665–674 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. Specht, A. T. & Li, J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics 33, 764–766 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Deshpande, A., Chu, L. -F., Stewart, R. & Gitter, A. Network inference with Granger causality ensembles on single-cell transcriptomics. Cell Rep. 38, 110333 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, S7 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5, 251–267 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Qiu, X. et al. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using Scribe. Cell Syst. 10, 265–274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sanchez-Castillo, M., Blanco, D., Tienda-Luna, I. M., Carrion, M. C. & Huang, Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34, 964–970 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J. & Jarvis, E. D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Dojer, N., Bednarz, P., Podsiadlo, A. & Wilczynski, B. BNFinder2: faster Bayesian network learning and Bayesian classification. Bioinformatics 29, 2068–2070 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wilczyński, B. & Dojer, N. BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics 25, 286–287 (2009).

    Article  PubMed  Google Scholar 

  170. Woodhouse, S., Piterman, N., Wintersteiger, C. M., Göttgens, B. & Fisher, J. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Syst. Biol. 12, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Yuan, Y. & Bar-Joseph, Z. Deep learning of gene relationships from single cell time-course expression data. Brief. Bioinform. 22, bbab142 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Polychronidou, M. et al. Single‐cell biology: what does the future hold? Mol. Syst. Biol. 19, e11799 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Matsumoto, H. et al. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-seq during differentiation. Bioinformatics 33, 2314–2321 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Aubin-Frankowski, P. -C. & Vert, J. -P. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Bioinformatics 36, 4774–4780 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in Single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bais, A. S. & Kostka, D. scds: computational annotation of doublets in single-cell RNA sequencing data. Bioinformatics 36, 1150–1158 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Fleming, S. J. et al. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat. Methods 20, 1323–1335 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Mohammad, N. S., Nazli, R., Zafar, H. & Fatima, S. Effects of lipid based Multiple Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women: a randomized clinical trial. Pak. J. Med. Sci. Q. 38, 219–226 (2022).

    Google Scholar 

  182. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  PubMed  Google Scholar 

  183. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Qian, X. et al. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 17, 101–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Janesick, A. et al. High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue. Nat. Commun. https://doi.org/10.1038/s41467-023-43458-x (2023).

  189. Kukanja, P. et al. Cellular architecture of evolving neuroinflammatory lesions and multiple sclerosis pathology. Cell 187, 1990–2009 (2024).

    Article  CAS  PubMed  Google Scholar 

  190. Missarova, A. et al. geneBasis: an iterative approach for unsupervised selection of targeted gene panels from scRNA-seq. Genome Biol. 22, 333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nelson, M. E., Riva, S. G. & Cvejic, A. SMaSH: a scalable, general marker gene identification framework for single-cell RNA-sequencing. BMC Bioinformatics 23, 328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Borm, L. E. et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat. Biotechnol. 41, 222–231 (2023).

    CAS  PubMed  Google Scholar 

  193. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Adameyko, R. Awatramani, T. Bakken, H. S. Bateup, A. Bhaduri, C. R. Cadwell, E. Caglayan, J. L. Chen, C. Chhatbar, M. G. Filbin, D. Gate, J. Gillis, H. Hochgerner, M. Kampmann, C. N. Kim, F. Krienen, J. Krull, G. La Manno, S. Marsh, M. Monje, Q. Li, Sten Linnarsson, Q. Ma, C. Mayer, V. Menon, P. Nano, M. R O’Dea, R. Patani, A. Pollen, M. Prinz, S. Quake, F. J. Quintana, M. Scavuzzo, M. Schmitz, S. Sloan, P. Tesar, J. Tollkuhn, M. Antonietta Tosches, M. E. Urbanek, C. Walsh, J. Werner and J. Yang for the insightful feedback on this work. G.C.-B. was supported by the Swedish Research Council (grant 2019-01360), Knut and Alice Wallenberg Foundation (grants 2019-0107 and 2019-0089), The Swedish Brain Foundation (FO2023-0032), The Swedish Society for Medical Research (SSMF, grant JUB2019) and the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine. We acknowledge National Institutes of Health (NIH) grants U01AG072573, P01AG073082 and UM1HG012076 (to M.R.C.) and U01DA052713, RF1AG079557, RF1NS128908 and R01AG079291 (to Y.S.). We also acknowledge NIH awards R01MH125516, R01NS123263, R01MH128364 and U01MH130962, the Esther A & Joseph Klingenstein Fund (to T.J.N.), the Shurl and Kay Curci Foundation (T.J.N.) and the Sontag Foundation (to T.J.N.) and a gift from the William K. Bowes Jr Foundation. T.J.N. is a New York Stem Cell Foundation Robertson Neuroscience Investigator. We acknowledge awards from the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition (220020467), the Simons Foundation (947591), NHGRI (HG011641), NINDS (NS115821, NS126143) and NIMH (MH126481, MH103517) to G.K. M.H. received a JPB Foundation Picower Institute Innovation Fund award. Work in the group of B.B. was supported by the Helmholtz Center Munich, DFG priority program SPP2202 (BO 5516/1-1), ERA-NET Neuron (MOSAIC) and European Research Council Consolidator grant to B.B. (EpiCortex, 101044469). M.N. acknowledges support from the Israel Science Foundation (grant no. 1079/21), and the European Union (ERC, DecodeSC, 101040660). O.A.B. acknowledges Wellcome Sanger core and Wellcome LEAP funding. J.F. acknowledges support from the National Institute of General Medical Sciences of the NIH under award number R35-GM142889. We acknowledge NINDS Intramural funds through 1ZIA NS003153 (to A.J.L.). K.R.M. acknowledges support from the Lieber Institute for Brain Development and NIH (R01DA055823). L.S. acknowledges support from the European Research Council (ERC StG ‘DecOmPress’, 950584), the National Multiple Sclerosis Society (PA-2022-36405 and RFA-2203-39300) and the German Research Foundation through collaborative research projects (SPP 2395, FOR 2690 and GRK 2727), individual research grants (SCHI 1330/4-1 and SCHI 1330/10-1) and a Heisenberg Fellowship (SCHI 1330/6-1). N.H. acknowledges support from the Israel Science Foundation research grant no. 1709/19 and the European Research Council grant 853409. S.A.L. acknowledges support from the NIH (R01EY033353), the Cure Alzheimer’s Fund, the Belfer Neurodegeneration Consortium, HHMI Emerging Pathogens Initiative and the Carol and Gene Ludwig Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ozgun Gokce, Genevieve Konopka, Shane Liddelow, Evan Macosko, Omer Ali Bayraktar, Naomi Habib or Tomasz J. Nowakowski.

Ethics declarations

Competing interests

S.A.L. declares a financial interest in AstronauTx and Synapticure. All other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Christine Cheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonev, B., Castelo-Branco, G., Chen, F. et al. Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery. Nat Neurosci 27, 2292–2309 (2024). https://doi.org/10.1038/s41593-024-01806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-024-01806-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing