Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

An adaptive and flexible role for primary sensory cortex

Abstract

Classical views of sensory perception describe a hierarchical organization, extending from the sensory periphery to static representations in the primary sensory cortex, with downstream regions supporting decision-making and action. There is growing evidence that suggests a more flexible role of primary sensory cortex, with behaviorally relevant functions distributed across multiple levels of the early sensory pathway that can change in response to context. In this Perspective, we first examine primary sensory cortex beyond sensory representations through the lens of sufficiency to predict behavior. We then consider the necessity of primary sensory cortex in sensory-driven behaviors, explored through a range of inactivation and lesioning studies. Finally, we provide evidence that points to an adaptive and flexible role for primary sensory cortex, where function is shaped by experience and context. This adaptive nature demands a more holistic investigative approach that challenges sensory pathways with adaptive behaviors in response to changing environments, behavioral contexts and injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic principles of sensory processing from periphery to thalamus to cortex.
Fig. 2: Neural representation of stimulus and behavioral responses studied with two distinct approaches.
Fig. 3: Evaluating behavioral performance in S1-lesioned mice.
Fig. 4: Adaptive sensing and decision-making.
Fig. 5: Possible adaptive roles of S1 across behavioral conditions.

Similar content being viewed by others

References

  1. Tootell, R. B. H., Silverman, M. S., Switkes, E. & de Valois, R. L. Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218, 902–904 (1982).

    PubMed  Google Scholar 

  2. Petersen, C. C. H. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).

    PubMed  Google Scholar 

  3. Fallon, J. B., Irvine, D. R. F. & Shepherd, R. K. Cochlear implants and brain plasticity. Hear. Res. 238, 110–117 (2008).

    PubMed  Google Scholar 

  4. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    PubMed  PubMed Central  Google Scholar 

  5. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968).

    PubMed  PubMed Central  Google Scholar 

  6. Waiblinger, C., McDonnell, M. E., Reedy, A. R., Borden, P. Y. & Stanley, G. B. Emerging experience-dependent dynamics in primary somatosensory cortex reflect behavioral adaptation. Nat. Commun. 13, 534 (2022).

    PubMed  PubMed Central  Google Scholar 

  7. Morelli, M., Casagrande, M. & Forte, G. Decision making: a theoretical review. Integr. Psychol. Behav. Sci. 56, 609–629 (2022).

    PubMed  Google Scholar 

  8. Heekeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 9, 467–479 (2008).

    PubMed  Google Scholar 

  9. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (John Wiley & Sons, 1966).

  10. Hautus, M. J., Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide (Routledge, 2021).

  11. Schall, J. D. Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2, 33–42 (2001).

    PubMed  Google Scholar 

  12. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    PubMed  Google Scholar 

  13. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4, 203–218 (2003).

    PubMed  Google Scholar 

  14. Glimcher, P. W. The neurobiology of visual-saccadic decision making. Annu. Rev. Neurosci. 26, 133–179 (2003).

    PubMed  Google Scholar 

  15. Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    PubMed  Google Scholar 

  16. Platt, M. L. Neural correlates of decisions. Curr. Opin. Neurobiol. 12, 141–148 (2002).

    PubMed  Google Scholar 

  17. De Lafuente, V. & Romo, R. Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc. Natl Acad. Sci. USA 103, 14266–14271 (2006).

    PubMed  PubMed Central  Google Scholar 

  18. De Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698–1703 (2005).

    PubMed  Google Scholar 

  19. Romo, R. & Rossi-Pool, R. Turning touch into perception. Neuron 105, 16–33 (2020).

    PubMed  Google Scholar 

  20. Hernández, A., Zainos, A. & Romo, R. Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc. Natl Acad. Sci. USA 97, 6191–6196 (2000).

    PubMed  PubMed Central  Google Scholar 

  21. Brody, C. D. & Hanks, T. D. Neural underpinnings of the evidence accumulator. Curr. Opin. Neurobiol. 37, 149–157 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Romo, R. & de Lafuente, V. Conversion of sensory signals into perceptual decisions. Prog. Neurobiol. 103, 41–75 (2013).

    PubMed  Google Scholar 

  23. Carandini, M. & Churchland, A. K. Probing perceptual decisions in rodents. Nat. Neurosci. 16, 824–831 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Sheppard, J. P., Raposo, D. & Churchland, A. K. Dynamic weighting of multisensory stimuli shapes decision-making in rats and humans. J. Vis. 13, 4 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Raposo, D., Sheppard, J. P., Schrater, P. R. & Churchland, A. K. Multisensory decision-making in rats and humans. J. Neurosci. 32, 3726–3735 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Brunton, B. W., Botvinick, M. M. & Brody, C. D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (2013).

    PubMed  Google Scholar 

  27. Odoemene, O., Pisupati, S., Nguyen, H. & Churchland, A. K. Visual evidence accumulation guides decision-making in unrestrained mice. J. Neurosci. 38, 10143–10155 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Alabi, O. O., Fortunato, M. P. & Fuccillo, M. V. Behavioral paradigms to probe individual mouse differences in value-based decision making. Front. Neurosci. 13, 50 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Jaramillo, S. & Zador, A. M. Mice and rats achieve similar levels of performance in an adaptive decision-making task. Front. Syst. Neurosci. 8, 173 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Jaramillo, S., Borges, K. & Zador, A. M. Auditory thalamus and auditory cortex are equally modulated by context during flexible categorization of sounds. J. Neurosci. 34, 5291–5301 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Waiblinger, C., Wu, C. M., Bolus, M. F., Borden, P. Y. & Stanley, G. B. Stimulus context and reward contingency induce behavioral adaptation in a rodent tactile detection task. J. Neurosci. 39, 1088–1099 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    PubMed  PubMed Central  Google Scholar 

  33. Grewe, B. F. & Helmchen, F. Optical probing of neuronal ensemble activity. Curr. Opin. Neurobiol. 19, 520–529 (2009).

    PubMed  Google Scholar 

  34. Knöpfel, T. & Song, C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci. 20, 719–727 (2019).

    PubMed  Google Scholar 

  35. Borden, P. Y. et al. Genetically expressed voltage sensor ArcLight for imaging large scale cortical activity in the anesthetized and awake mouse. Neurophotonics 4, 031212 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Steinmetz, N. A., Koch, C., Harris, K. D. & Carandini, M. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    PubMed  Google Scholar 

  38. Christie, R. H. et al. Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J. Neurosci. 21, 858–864 (2001).

    PubMed  PubMed Central  Google Scholar 

  39. Yang, H., Kwon, S. E., Severson, K. S. & O’Connor, D. H. Origins of choice-related activity in mouse somatosensory cortex. Nat. Neurosci. 19, 127–134 (2016).

    PubMed  Google Scholar 

  40. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Adhikari, B. M., Sathian, K., Epstein, C. M., Lamichhane, B. & Dhamala, M. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity. NeuroImage 91, 300–310 (2014).

    PubMed  Google Scholar 

  42. Miyashita, T. & Feldman, D. E. Behavioral detection of passive whisker stimuli requires somatosensory cortex. Cereb. Cortex 23, 1655–1662 (2013).

    PubMed  Google Scholar 

  43. Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. H. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013).

    PubMed  Google Scholar 

  44. Kwon, S. E., Yang, H., Minamisawa, G. & O’Connor, D. H. Sensory and decision-related activity propagate in a cortical feedback loop during touch perception. Nat. Neurosci. 19, 1243–1249 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Hong, Y. K., Lacefield, C. O., Rodgers, C. C. & Bruno, R. M. Sensation movement and learning in the absence of barrel cortex. Nature 561, 542–546 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Le Merre, P. et al. Reward-based learning drives rapid sensory signals in medial prefrontal cortex and dorsal hippocampus necessary for goal-directed behavior. Neuron 97, 83–91 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Oryshchuk, A. et al. Distributed and specific encoding of sensory, motor, and decision information in the mouse neocortex during goal-directed behavior. Cell Rep. 43, 113618 (2024).

    PubMed  Google Scholar 

  48. Esmaeili, V. et al. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron 109, 2183–2201 (2021).

    PubMed  PubMed Central  Google Scholar 

  49. El-Boustani, S. et al. Anatomically and functionally distinct thalamocortical inputs to primary and secondary mouse whisker somatosensory cortices. Nat. Commun. 11, 3342 (2020).

    PubMed  PubMed Central  Google Scholar 

  50. Takahashi, N. et al. Active dendritic currents gate descending cortical outputs in perception. Nat. Neurosci. 23, 1277–1285 (2020).

    PubMed  Google Scholar 

  51. Zareian, B., Lam, A. & Zagha, E. Dorsolateral striatum is a bottleneck for responding to task-relevant stimuli in a learned whisker detection task in mice. J. Neurosci. 43, 2126–2139 (2023).

    PubMed  PubMed Central  Google Scholar 

  52. Sippy, T., Lapray, D., Crochet, S. & Petersen, C. C. H. Cell-type-specific sensorimotor processing in striatal projection neurons during goal-directed behavior. Neuron 88, 298–305 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88 (2010).

    PubMed  Google Scholar 

  54. Rodgers, C. C. et al. Sensorimotor strategies and neuronal representations for shape discrimination. Neuron 109, 2308–2325 (2021).

    PubMed  PubMed Central  Google Scholar 

  55. Buetfering, C. et al. Behaviorally relevant decision coding in primary somatosensory cortex neurons. Nat. Neurosci. 25, 1225–1236 (2022).

    PubMed  PubMed Central  Google Scholar 

  56. Banerjee, A. et al. Value-guided remapping of sensory cortex by lateral orbitofrontal cortex. Nature 585, 245–250 (2020).

    PubMed  Google Scholar 

  57. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    PubMed  Google Scholar 

  58. Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321 (2016).

    PubMed  Google Scholar 

  59. Lampl, I. & Katz, Y. Neuronal adaptation in the somatosensory system of rodents. Neuroscience 343, 66–76 (2017).

    PubMed  Google Scholar 

  60. Van Essen, D. C. & Maunsell, J. H. R. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375 (1983).

    Google Scholar 

  61. Hochstein, S. & Ahissar, M. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36, 791–804 (2002).

    PubMed  Google Scholar 

  62. Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).

    PubMed  Google Scholar 

  63. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    PubMed  Google Scholar 

  64. Hinton, G. E. Learning multiple layers of representation. Trends Cogn. Sci. 11, 428–434 (2007).

    PubMed  Google Scholar 

  65. Friston, K. The free-energy principle: a unified brain theory?. Nat. Rev. Neurosci. 11, 127–138 (2010).

    PubMed  Google Scholar 

  66. Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    PubMed  Google Scholar 

  67. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Gdalyahu, A. et al. Associative fear learning enhances sparse network coding in primary sensory cortex. Neuron 75, 121–132 (2012).

    PubMed  PubMed Central  Google Scholar 

  69. Kok, P. & de Lange, F. P. in An Introduction to Model-Based Cognitive Neuroscience 1st edn (eds Forstmann, B. U. & Wagenmakers, E.-J.) 221–244 (Springer, 2015).

  70. Wood, K. C., Angeloni, C. F., Oxman, K., Clopath, C. & Geffen, M. N. Neuronal activity in sensory cortex predicts the specificity of learning in mice. Nat. Commun. 13, 1167 (2022).

    PubMed  PubMed Central  Google Scholar 

  71. Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86, 1478–1490 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Rabinovich, R. J., Kato, D. D. & Bruno, R. M. Learning enhances encoding of time and temporal surprise in mouse primary sensory cortex. Nat. Commun. 13, 5504 (2022).

    PubMed  PubMed Central  Google Scholar 

  73. Makino, H. & Komiyama, T. Learning enhances the relative impact of top-down processing in the visual cortex. Nat. Neurosci. 18, 1116–1122 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Pollmann, S. & Maertens, M. Shift of activity from attention to motor-related brain areas during visual learning. Nat. Neurosci. 8, 1494–1496 (2005).

    PubMed  Google Scholar 

  75. Mukai, I. et al. Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J. Neurosci. 27, 11401–11411 (2007).

    PubMed  PubMed Central  Google Scholar 

  76. Sigman, M. et al. Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron 46, 823–835 (2005).

    PubMed  PubMed Central  Google Scholar 

  77. Gilbert, C. D. & Li, W. Adult visual cortical plasticity. Neuron 75, 250–264 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. Waiblinger, C., Whitmire, C. J., Sederberg, A., Stanley, G. B. & Schwarz, C. Primary tactile thalamus spiking reflects cognitive signals. J. Neurosci. 38, 4870–4885 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Suga, N. Role of corticofugal feedback in hearing. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 194, 169–183 (2008).

    PubMed  Google Scholar 

  80. Jones, H. E. et al. Figure-ground modulation in awake primate thalamus. Proc. Natl Acad. Sci. USA 112, 7085–7090 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Reinhold, K., Resulaj, A. & Scanziani, M. Brain state-dependent modulation of thalamic visual processing by cortico-thalamic feedback. J. Neurosci. 43, 1540–1554 (2023).

    PubMed  PubMed Central  Google Scholar 

  82. Born, G. et al. Corticothalamic feedback sculpts visual spatial integration in mouse thalamus. Nat. Neurosci. 24, 1711–1720 (2021).

    PubMed  Google Scholar 

  83. Dash, S., Autio, D. M. & Crandall, S. R. State-dependent modulation of activity in distinct layer 6 corticothalamic neurons in barrel cortex of awake mice. J. Neurosci. 42, 6551–6565 (2022).

    PubMed  PubMed Central  Google Scholar 

  84. Voigts, J., Deister, C. A. & Moore, C. I. Layer 6 ensembles can selectively regulate the behavioral impact and layer-specific representation of sensory deviants. eLife 9, e48957 (2020).

    PubMed  PubMed Central  Google Scholar 

  85. Dimwamwa, E. D., Pala, A., Chundru, V., Wright, N. C. & Stanley, G. B. Dynamic corticothalamic modulation of the somatosensory thalamocortical circuit during wakefulness. Nat. Commun. 15, 3529 (2024).

    PubMed  PubMed Central  Google Scholar 

  86. Schultz, W., Dayan, P., & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    PubMed  Google Scholar 

  87. Nienborg, H. & Cumming, B. G. Decision-related activity in sensory neurons may depend on the columnar architecture of cerebral cortex. J. Neurosci. 34, 3579–3585 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Palmer, C., Cheng, S.-Y. & Seidemann, E. Linking neuronal and behavioral performance in a reaction-time visual detection task. J. Neurosci. 27, 8122–8137 (2007).

    PubMed  PubMed Central  Google Scholar 

  89. Resulaj, A., Ruediger, S., Olsen, S. R. & Scanziani, M. First spikes in visual cortex enable perceptual discrimination. eLife 7, e34044 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Isa, T., Tohyama, T. & Kinoshita, M. Phylogenetic view of the compensatory mechanisms in motor and sensory systems after neuronal injury. Curr. Res. Neurobiol. 3, 100058 (2022).

    PubMed  PubMed Central  Google Scholar 

  91. Guo, L., Weems, J. T., Walker, W. I., Levichev, A. & Jaramillo, S. Choice-selective neurons in the auditory cortex and in its striatal target encode reward expectation. J. Neurosci. 39, 3687–3697 (2019).

    PubMed  PubMed Central  Google Scholar 

  92. Takamiya, S. et al. Auditory cortex neurons show task-related and learning-dependent selectivity toward sensory input and reward during the learning process of an associative memory task. eNeuro 9, ENEURO.0046-22.2022 (2022).

    PubMed  PubMed Central  Google Scholar 

  93. O’Sullivan, C., Weible, A. P. & Wehr, M. Auditory cortex contributes to discrimination of pure tones. eNeuro 6, ENEURO.0340-19.2019 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH National Institute of Neurological Disorders and Stroke (NINDS) BRAIN (grants R01NS104928 and RF1NS128896) and National Institute of Biomedical Imaging and Bioengineering BRAIN (grant R01EB029857). The authors would like to thank C. Petersen and the other anonymous reviewers for providing valuable critiques and suggestions for this Perspective.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to conceptualization and to writing and revising the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Garrett B. Stanley.

Ethics declarations

Competing interests

All authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Carl Petersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waiblinger, C., Reedy, A.R. & Stanley, G.B. An adaptive and flexible role for primary sensory cortex. Nat Neurosci 29, 2–12 (2026). https://doi.org/10.1038/s41593-025-02124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-025-02124-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing