Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aggregation of mutant cysteine string protein-α via Fe–S cluster binding is mitigated by iron chelators

Abstract

Point mutations in cysteine string protein-α (CSPα) cause dominantly inherited adult-onset neuronal ceroid lipofuscinosis (ANCL), a rapidly progressing and lethal neurodegenerative disease with no treatment. ANCL mutations are proposed to trigger CSPα aggregation/oligomerization, but the mechanism of oligomer formation remains unclear. Here we use purified proteins, mouse primary neurons and patient-derived induced neurons to show that the normally palmitoylated cysteine string region of CSPα loses palmitoylation in ANCL mutants. This allows oligomerization of mutant CSPα via ectopic binding of iron–sulfur (Fe–S) clusters. The resulting oligomerization of mutant CSPα causes its mislocalization and consequent loss of its synaptic SNARE-chaperoning function. We then find that pharmacological iron chelation mitigates the oligomerization of mutant CSPα, accompanied by partial rescue of the downstream SNARE defects and the pathological hallmark of lipofuscin accumulation. Thus, the iron chelators deferiprone (L1) and deferoxamine (Dfx), which are already used to treat iron overload in humans, offer a new approach for treating ANCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fe–S cluster binding and oligomerization of CSPα in vitro and in mammalian cells.
Fig. 2: Mechanism of Fe–S cluster binding to the ANCL mutants of CSPα in neurons.
Fig. 3: Mislocalization of ANCL mutants of CSPα leads to deficiencies in SNAP-25 levels and SNARE complex assembly in neurons.
Fig. 4: Iron chelation in neurons alleviates oligomerization of mutant CSPα and the downstream SNARE defects.
Fig. 5: In ANCL patient-derived iNs iron chelators alleviate CSPα oligomerization, the SNAP-25 chaperoning defect and lipofuscin accumulation.
Fig. 6: Model depicting the mechanism of CSPα oligomerization in ANCL and its alleviation by Fe chelators.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data for Figs. 1–5 are provided with this paper.

References

  1. Chamberlain, L. H. & Burgoyne, R. D. The cysteine-string domain of the secretory vesicle cysteine-string protein is required for membrane targeting. Biochem J. 335, 205–209 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tobaben, S. et al. A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31, 987–999 (2001).

    CAS  PubMed  Google Scholar 

  3. Sharma, M., Burré, J. & Südhof, T. C. CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat. Cell Biol. 13, 30–39 (2011).

    CAS  PubMed  Google Scholar 

  4. Südhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Benitez, B. A. et al. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS ONE 6, e26741 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nosková, L. et al. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am. J. Hum. Genet. 89, 241–252 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Velinov, M. et al. Mutations in the gene DNAJC5 cause autosomal dominant Kufs disease in a proportion of cases: study of the Parry family and 8 other families. PLoS ONE 7, e29729 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Josephson, S. A., Schmidt, R. E., Millsap, P., McManus, D. Q. & Morris, J. C. Autosomal dominant Kufs’ disease: a cause of early onset dementia. J. Neurol. Sci. 188, 51–60 (2001).

    CAS  PubMed  Google Scholar 

  9. Henderson, M. X. et al. Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol. 131, 621–637 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y.-Q. & Chandra, S. S. Oligomerization of cysteine string protein alpha mutants causing adult neuronal ceroid lipofuscinosis. Biochim. Biophys. Acta 1842, 2136–2146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Greaves, J. et al. Palmitoylation-induced aggregation of cysteine-string protein mutants that cause neuronal ceroid lipofuscinosis. J. Biol. Chem. 287, 37330–37339 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Diez-Ardanuy, C., Greaves, J., Munro, K. R., Tomkinson, N. C. & Chamberlain, L. H. A cluster of palmitoylated cysteines are essential for aggregation of cysteine-string protein mutants that cause neuronal ceroid lipofuscinosis. Sci. Rep. 7, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Dailey, H. A., Finnegan, M. G. & Johnson, M. K. Human ferrochelatase is an iron–sulfur protein. Biochemistry 33, 403–407 (1994).

    CAS  PubMed  Google Scholar 

  14. Johansson, C., Kavanagh, K. L., Gileadi, O. & Oppermann, U. Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria. J. Biol. Chem. 282, 3077–3082 (2007).

    CAS  PubMed  Google Scholar 

  15. Mesecke, N., Mittler, S., Eckers, E., Herrmann, J. M. & Deponte, M. Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry 47, 1452–1463 (2008).

    CAS  PubMed  Google Scholar 

  16. Gundersen, C. B., Mastrogiacomo, A., Faull, K. & Umbach, J. A. Extensive lipidation of a Torpedo cysteine string protein. J. Biol. Chem. 269, 19197–19199 (1994).

    CAS  PubMed  Google Scholar 

  17. Zinsmaier, K. E. et al. A cysteine-string protein is expressed in retina and brain of Drosophila. J. Neurogenet. 7, 15–29 (1990).

    CAS  PubMed  Google Scholar 

  18. Kohan, S. A. et al. Cysteine string protein immunoreactivity in the nervous system and adrenal gland of rat. J. Neurosci. 15, 6230–6238 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin, J. J. Adult type of neuronal ceroid lipofuscinosis. Dev. Neurosci. 13, 331–338 (1991).

    CAS  PubMed  Google Scholar 

  20. Goebel, H. H. & Braak, H. Adult neuronal ceroid-lipofuscinosis. Clin. Neuropathol. 8, 109–119 (1989).

    CAS  PubMed  Google Scholar 

  21. Maio, N. & Rouault, T. A. Mammalian Fe–S proteins: definition of a consensus motif recognized by the co-chaperone HSC20. Metallomics 8, 1032–1046 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rouault, T. A. Biogenesis of iron–sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis. Model. Mech. 5, 155–164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chamberlain, L. H. & Burgoyne, R. D. The molecular chaperone function of the secretory vesicle cysteine string proteins. J. Biol. Chem. 272, 31420–31426 (1997).

    CAS  PubMed  Google Scholar 

  24. Zinsmaier, K. E., Eberle, K. K., Buchner, E., Walter, N. & Benzer, S. Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263, 977–980 (1994).

    CAS  PubMed  Google Scholar 

  25. Umbach, J. A. et al. Presynaptic dysfunction in Drosophila csp mutants. Neuron 13, 899–907 (1994).

    CAS  PubMed  Google Scholar 

  26. Chandra, S., Gallardo, G., Fernández-Chacón, R., Schlüter, O. M. & Südhof, T. C. α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123, 383–396 (2005).

    CAS  PubMed  Google Scholar 

  27. Sharma, M. et al. CSPα knockout causes neurodegeneration by impairing SNAP-25 function. EMBO J. 31, 829–841 (2012).

    CAS  PubMed  Google Scholar 

  28. Malkin, R. & Rabinowitz, J. C. The reactivity of clostridial ferredoxin with iron chelating agents and 5,5′-dithiobis-2-nitrobenzoic acid. Biochemistry 6, 3880–3891 (1967).

    CAS  PubMed  Google Scholar 

  29. Tong, W.-H. & Rouault, T. A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron–sulfur cluster biogenesis and iron homeostasis. Cell Metab. 3, 199–210 (2006).

    CAS  PubMed  Google Scholar 

  30. Baldus, W. P., Fairbanks, V. F., Dickson, E. R. & Baggenstoss, A. H. Deferoxamine-chelatable iron in hemochromatosis and other disorders of iron overload. Mayo Clin. Proc. 53, 157–165 (1978).

    CAS  PubMed  Google Scholar 

  31. Hoffbrand, A. V., Cohen, A. & Hershko, C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood 102, 17–24 (2003).

    CAS  PubMed  Google Scholar 

  32. Abbruzzese, G. et al. A pilot trial of deferiprone for neurodegeneration with brain iron accumulation. Haematologica 96, 1708–1711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Habgood, M. D. et al. Investigation into the correlation between the structure of hydroxypyridinones and blood-brain barrier permeability. Biochem. Pharmacol. 57, 1305–1310 (1999).

    CAS  PubMed  Google Scholar 

  34. Fredenburg, A. M., Sethi, R. K., Allen, D. D. & Yokel, R. A. The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethly-, 1,2 diethyl-, and 1-[ethan-1’ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology 108, 191–199 (1996).

    CAS  PubMed  Google Scholar 

  35. Fernández-Chacón, R. et al. The synaptic vesicle protein CSPα prevents presynaptic degeneration. Neuron 42, 237–251 (2004).

    PubMed  Google Scholar 

  36. Braun, J. E. & Scheller, R. H. Cysteine string protein, a DnaJ family member, is present on diverse secretory vesicles. Neuropharmacology 34, 1361–1369 (1995).

    CAS  PubMed  Google Scholar 

  37. Chamberlain, L. H. & Burgoyne, R. D. Activation of the ATPase activity of heat-shock proteins Hsc70/Hsp70 by cysteine-string protein. Biochem J. 322, 853–858 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pang, Z. P. et al. Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Y.-Q. et al. Identification of CSPα clients reveals a role in dynamin 1 regulation. Neuron 74, 136–150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson, G. W., Goebel, H. H. & Simonati, A. Human pathology in NCL. Biochim. Biophys. Acta 1832, 1807–1826 (2013).

    CAS  PubMed  Google Scholar 

  41. Hall, N. A., Lake, B. D., Dewji, N. N. & Patrick, A. D. Lysosomal storage of subunit c of mitochondrial ATP synthase in Batten’s disease (ceroid-lipofuscinosis). Biochem J. 275, 269–272 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Netz, D. J., Mascarenhas, J., Stehling, O., Pierik, A. J. & Lill, R. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol. 24, 303–312 (2014).

    CAS  PubMed  Google Scholar 

  43. Piga, A. et al. Deferiprone. Ann. N. Y. Acad. Sci. 1202, 75–78 (2010).

    CAS  PubMed  Google Scholar 

  44. Jordan, M., Schallhorn, A. & Wurm, F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24, 596–601 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551, 639–643 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maximov, A., Pang, Z. P., Tervo, D. G. R. & Südhof, T. C. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J. Neurosci. Methods 161, 75–87 (2007).

    PubMed  Google Scholar 

  47. Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    CAS  PubMed  Google Scholar 

  48. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yee, J. K. et al. A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc. Natl Acad. Sci. USA 91, 9564–9568 (1994).

    CAS  PubMed  Google Scholar 

  50. Tamarit, J., Irazusta, V., Moreno-Cermeño, A. & Ros, J. Colorimetric assay for the quantitation of iron in yeast. Anal. Biochem. 351, 149–151 (2006).

    CAS  PubMed  Google Scholar 

  51. Riemer, J., Hoepken, H. H., Czerwinska, H., Robinson, S. R. & Dringen, R. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal. Biochem. 331, 370–375 (2004).

    CAS  PubMed  Google Scholar 

  52. Fogo, J. K. & Popowsky, M. Spectrophotometric determination of hydrogen sulfide - methylene blue method. Anal. Chem. 21, 732–734 (1949).

    CAS  Google Scholar 

  53. Wernig, M. et al. Tau EGFP embryonic stem cells: an efficient tool for neuronal lineage selection and transplantation. J. Neurosci. Res. 69, 918–924 (2002).

    CAS  PubMed  Google Scholar 

  54. Ikegaki, N. & Kennett, R. H. Glutaraldehyde fixation of the primary antibody-antigen complex on nitrocellulose paper increases the overall sensitivity of immunoblot assay. J. Immunol. Methods 124, 205–210 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. C. Südhof for kindly sharing the CSPα knockout mouse line and antibodies against CSPα and neuronal SNARE proteins, and G. Petsko for his advice on experimental approaches and the manuscript. Cornell High Energy Synchrotron Source (CHESS) experiments were supported by the National Science Foundation under award DMR-1332208. This work was supported by grants from Alzheimer’s Association (NIRG-15-363678 to MS), American Federation for Aging Research (New Investigator in Alzheimer’s Research Grant, to M.S.), NIH National Institute for Aging (1R01AG052505, to M.S.) and National Institute for Neurological Disorders and Stroke (1R01NS095988, to M.S.) and (1R01NS102181, to J.B.), as well as F31 studentship (NS098623, to N.N.N.).

Author information

Authors and Affiliations

Authors

Contributions

N.N.N., B.E., P.K., Y.N., J.B. and M.S. designed, performed and analyzed all experiments except the X-ray fluorescence experiment, which was performed and analyzed by R.H. and Q.H. N.D. and M.T.V. contributed ANCL patient fibroblasts to the study. N.N.N., J.B. and M.S. wrote the manuscript. M.S. conceived the project and directed the research.

Corresponding author

Correspondence to Manu Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures with legends.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Unprocessed western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, N.N., Ergel, B., Kharel, P. et al. Aggregation of mutant cysteine string protein-α via Fe–S cluster binding is mitigated by iron chelators. Nat Struct Mol Biol 27, 192–201 (2020). https://doi.org/10.1038/s41594-020-0375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-020-0375-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing