Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Understanding ubiquitination in neurodevelopment by integrating insights across space and time

Abstract

Ubiquitination regulates a myriad of eukaryotic signaling cascades by modifying substrate proteins, thereby determining their functions and fates. In this perspective, we discuss current challenges in investigating the ubiquitin system in the developing brain. We foster the concept that ubiquitination pathways are spatiotemporally regulated and tightly intertwined with molecular and cellular transitions during neurogenesis and neural circuit assembly. Focusing on the neurologically highly relevant class of homologous to E6AP C-terminus (HECT) ubiquitin ligases, we propose cross-disciplinary translational approaches bridging state-of-the-art cell biology, proteomics, biochemistry, structural biology and neuroscience to dissect ubiquitination in neurodevelopment and its specific perturbations in brain diseases. We highlight that a comprehensive understanding of ubiquitin signaling in the brain may reveal new horizons in basic neuroscience and clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptomics-based temporal dynamics and cell type specificity of selected HECT-type E3s in the developing mouse cerebral cortex.

Similar content being viewed by others

Data availability

The data presented in this manuscript are included within the paper and are available from the corresponding author upon request.

References

  1. Kwon, Y. T. & Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci. 42, 873–886 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kolla, S., Ye, M., Mark, K. G. & Rapé, M. Assembly and function of branched ubiquitin chains. Trends Biochem. Sci. 47, 759–771 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Dikic, I. & Schulman, B. A. An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24, 273–287 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, K. et al. Ubiquitylation of nucleic acids by DELTEX ubiquitin E3 ligase DTX3L. Nucleic Acids Res. 2, 801–815 (2024).

    Article  Google Scholar 

  6. Dearlove, E. L. et al. DTX3L ubiquitin ligase ubiquitinates single-stranded nucleic acids. eLife 13, RP98070 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harnett, D. et al. A critical period of translational control during brain development at codon resolution. Nat. Struct. Mol. Biol. 29, 1277–1290 (2021).

    Article  Google Scholar 

  9. Sun, C. et al. An abundance of free regulatory (19S) proteasome particles regulates neuronal synapses. Science 380, eadf2018 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Ambrozkiewicz, M. C. & Kawabe, H. HECT‐type E3 ubiquitin ligases in nerve cell development and synapse physiology. FEBS Lett. 589, 1635–1643 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Scheffner, M. & Kumar, S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim. Biophys. Acta 1843, 61–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. George, A. J., Hoffiz, Y. C., Charles, A. J., Zhu, Y. & Mabb, A. M. A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front. Genet. 9, 29 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hokayem, J. E. & Nawaz, Z. E6AP in the brain: one protein, dual function, multiple diseases. Mol. Neurobiol. 49, 827–839 (2014).

    Article  PubMed  Google Scholar 

  15. Burette, A. C. et al. Subcellular organization of UBE3A in human cerebral cortex. Mol. Autism 9, 54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pandya, N. J. et al. A cross-species spatiotemporal proteomic analysis identifies UBE3A-dependent signaling pathways and targets. Mol. Psychiatry 27, 2590–2601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furusawa, K. et al. Presynaptic Ube3a E3 ligase promotes synapse elimination through down-regulation of BMP signaling. Science 381, 1197–1205 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J. et al. UBE3A-mediated PTPA ubiquitination and degradation regulate PP2A activity and dendritic spine morphology. Proc. Natl Acad. Sci. USA 116, 12500–12505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Judson, M. C. et al. Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice. JCI Insight 6, e144712 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. O’Geen, H. et al. Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an Angelman syndrome mouse model. Mol. Ther. 31, 1088–1105 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, J. et al. A high-fidelity RNA-targeting Cas13 restores paternal Ube3a expression and improves motor functions in Angelman syndrome mice. Mol. Ther. 31, 2286–2295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, H.-S. et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481, 185–189 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, X. et al. The HECT-domain ubiquitin ligase HUWE1 controls neural differentiation and proliferation by destabilizing the N-MYC oncoprotein. Nat. Cell Biol. 10, 643–653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forget, A. et al. Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase HUWE1 in neural precursors. Dev. Cell 29, 649–661 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Urbán, N. et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353, 292–295 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao, X. et al. The N-MYC–DLL3 cascade is suppressed by the ubiquitin ligase HUWE1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev. Cell 17, 210–221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, Z.-Y. et al. Ubiquitination and inhibition of glycine receptor by HUWE1 in spinal cord dorsal horn. Neuropharmacology 148, 358–365 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Ambrozkiewicz, M. C. et al. The murine ortholog of Kaufman oculocerebrofacial syndrome protein Ube3b regulates synapse number by ubiquitinating Ppp3cc. Mol. Psychiatry 26, 1980–1995 (2020).

    Article  PubMed  Google Scholar 

  30. Zhu, J. et al. Epilepsy-associated gene NEDD4-2 mediates neuronal activity and seizure susceptibility through AMPA receptors. PLoS Genet. 13, e1006634 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwarz, L. A., Hall, B. J. & Patrick, G. N. Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway. J. Neurosci. 30, 16718–16729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Altas, B. et al. NEDD4-2-dependent regulation of astrocytic Kir4.1 and Connexin43 controls neuronal network activity. J. Cell Biol. 223, e201902050 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tang, D. et al. The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle. Nat. Commun. 2, 501 (2011).

    Article  PubMed  Google Scholar 

  34. Petracchini, S. et al. Optineurin links HACE1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division. Nat. Commun. 13, 6059 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Z. et al. Ubiquitylation of autophagy receptor optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell 26, 106–120 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, L. et al. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nat. Commun. 5, 3430 (2014).

    Article  PubMed  Google Scholar 

  37. Nagy, V. et al. HACE1 deficiency leads to structural and functional neurodevelopmental defects. Neurol. Genet. 5, e330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rotblat, B. et al. HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. Proc. Natl Acad. Sci. 111, 3032–3037 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ehrnhoefer, D. E. et al. HACE1 is essential for astrocyte mitochondrial function and influences Huntington disease phenotypes in vivo. Hum. Mol. Genet. 27, 239–253 (2017).

    Article  PubMed Central  Google Scholar 

  40. Torrino, S. et al. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev. Cell 21, 959–965 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Düring, J. et al. Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1. Nat. Struct. Mol. Biol. 31, 364–377 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Singh, S. et al. Structural basis for the enzymatic activity of the HACE1 HECT-type E3 ligase through N-terminal helix dimerization. Adv. Sci. 10, e2207672 (2023).

    Article  Google Scholar 

  43. Fajner, V., Maspero, E. & Polo, S. Targeting HECT-type E3 ligases: insights from catalysis, regulation and inhibitors. FEBS Lett. 591, 2636–2647 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Lorenz, S. Structural mechanisms of HECT-type ubiquitin ligases. Biol. Chem. 399, 127–145 (2017).

    Article  Google Scholar 

  45. Filipčík, P., Curry, J. R. & Mace, P. D. When worlds collide—mechanisms at the interface between phosphorylation and ubiquitination. J. Mol. Biol. 429, 1097–1113 (2017).

    Article  PubMed  Google Scholar 

  46. Cheng, P., Lu, H., Shelly, M., Gao, H. & Poo, M. Phosphorylation of E3 ligase SMURF1 switches its substrate preference in support of axon development. Neuron 69, 231–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Yi, J. J. et al. An autism-linked mutation disables phosphorylation control of UBE3A. Cell 162, 795–807 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ordureau, A. et al. Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy. Mol. Cell 81, 5082–5098 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Biesemann, C. et al. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J. 33, 157–170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D’Arca, D. et al. HUWE1 ubiquitin ligase is essential to synchronize neuronal and glial differentiation in the developing cerebellum. Proc. Natl Acad. Sci. USA 107, 5875–5880 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kawabe, H. et al. Regulation of Rap2A by the ubiquitin ligase NEDD4-1 controls neurite development. Neuron 65, 358–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Govindan, S., Oberst, P. & Jabaudon, D. In vivo pulse labeling of isochronic cohorts of cells in the central nervous system using FlashTag. Nat. Protoc. 13, 2297–2311 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Borisova, E. et al. Protein translation rate determines neocortical neuron fate. Nat. Commun. 15, 4879 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Veldman, M. B. et al. Brainwide genetic sparse cell labeling to illuminate the morphology of neurons and glia with Cre-dependent MORF mice. Neuron 108, 111–127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mort, R. L. et al. Fucci2a: a bicistronic cell cycle reporter that allows Cre mediated tissue specific expression in mice. Cell Cycle 13, 2681–2696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Udeshi, N. D. et al. Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nat. Commun. 11, 359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fulzele, A. & Bennett, E. J. Ubiquitin diGLY proteomics as an approach to identify and quantify the ubiquitin-modified proteome. Methods Mol. Biol. 1844, 363–384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hjerpe, R. et al. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin‐binding entities. EMBO Rep. 10, 1250–1258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Michel, M. A., Swatek, K. N., Hospenthal, M. K. & Komander, D. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Mol. Cell 68, 233–246 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barroso-Gomila, O. et al. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat. Commun. 14, 7656 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Valkevich, E. M., Sanchez, N. A., Ge, Y. & Strieter, E. R. Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry 53, 4979–4989 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Yau, R. G. et al. Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control. Cell 171, 918–933 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lange, S. M. et al. VCP/p97-associated proteins are binders and debranching enzymes of K48–K63-branched ubiquitin chains. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01354-y (2024).

  68. Swatek, K. N. et al. Insights into ubiquitin chain architecture using Ub-clipping. Nature 572, 533–537 (2018).

    Article  Google Scholar 

  69. Bakos, G. et al. An E2-ubiquitin thioester-driven approach to identify substrates modified with ubiquitin and ubiquitin-like molecules. Nat. Commun. 9, 4776 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194–208 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bandler, R. C. et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature 601, 404–409 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Unterauer, E. M. et al. Spatial proteomics in neurons at single-protein resolution. Cell 187, 1785–1800 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hehl, L. A. et al. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat. Chem. Biol. 20, 190–200 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Mark, K. G. et al. Orphan quality control shapes network dynamics and gene expression. Cell 16, 3460–3475 (2023).

    Article  Google Scholar 

  82. Wang, Z. et al. Structural insights into the functional mechanism of the ubiquitin ligase E6AP. Nat. Commun. 15, 3531 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, J. C. K. et al. Structure of the p53 degradation complex from HPV16. Nat. Commun. 15, 1842 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sandate, C. R., Chakraborty, D., Kater, L., Kempf, G. & Thomä, N. H. Structural insights into viral hijacking of p53 by E6 and E6AP. Preprint at bioRxiv https://doi.org/10.1101/2023.11.01.565136 (2023).

  85. Mao, J. et al. Structural visualization of HECT–E3 Ufd4 accepting and transferring ubiquitin to form K29/K48-branched polyubiquitination on N-degron. Preprint at bioRxiv https://doi.org/10.1101/2023.05.23.542033 (2023).

  86. Henneberg, L. T. & Schulman, B. A. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem. Biol. 28, 889–902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kliza, K. & Husnjak, K. Resolving the complexity of ubiquitin networks. Front. Mol. Biosci. 7, 21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ekkebus, R. et al. On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J. Am. Chem. Soc. 135, 2867–2870 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pao, K.-C. et al. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature 556, 381–385 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. GBD 2021 Nervous System Disorders Collaborators Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 23, 344–381 (2024).

    Article  Google Scholar 

  91. Sen, D., Drobna, Z. & Keung, A. J. Evaluation of UBE3A antibodies in mice and human cerebral organoids. Sci. Rep. 11, 6323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yao, D. et al. Scalable genetic screening for regulatory circuits using compressed Perturb-seq. Nat. Biotechnol. 42, 1282–1295 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Tuijtel, M. W., Koster, A. J., Jakobs, S., Faas, F. G. A. & Sharp, T. H. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9, 1369 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Giles, A. C. & Grill, B. Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease. Neural Dev. 15, 6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Coquand, L. et al. A cell fate decision map reveals abundant direct neurogenesis bypassing intermediate progenitors in the human developing neocortex. Nat. Cell Biol. 26, 698–709 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hagn, M., Marschall, S. & de Angelis, M. H. EMMA—the European mouse mutant archive. Brief. Funct. Genom. Proteom. 6, 186–192 (2007).

    Article  Google Scholar 

  99. Bogue, M. A., Grubb, S. C., Maddatu, T. P. & Bult, C. J. Mouse Phenome Database (MPD). Nucleic Acids Res. 35, D643–D649 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Ambrozkiewicz, M. C. et al. Polarity acquisition in cortical neurons is driven by synergistic action of Sox9-regulated Wwp1 and Wwp2 E3 ubiquitin ligases and intronic miR-140. Neuron 100, 1097–1115.e15 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shinmyo, Y. & Kawasaki, H. CRISPR/Cas9‐mediated gene knockout in the mouse brain using in utero electroporation. Curr. Protoc. Neurosci. 79, 3.32.1–3.32.11 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Cai, R. et al. Whole-mouse clearing and imaging at the cellular level with vDISCO. Nat. Protoc. 18, 1197–1242 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Wittig, I. & Malacarne, P. F. Complexome profiling: assembly and remodeling of protein complexes. Int. J. Mol. Sci. 22, 7809 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Han, S., Li, J. & Ting, A. Y. Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr. Opin. Neurobiol. 50, 17–23 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  PubMed  Google Scholar 

  107. Milacic, M. et al. The Reactome Pathway Knowledgebase 2024. Nucleic Acids Res. 52, D672–D678 (2023).

    Article  PubMed Central  Google Scholar 

  108. Thomas, P. D. et al. PANTHER: making genome‐scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Narimatsu, M. et al. Regulation of planar cell polarity by SMURF ubiquitin ligases. Cell 137, 295–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Ordureau, A., Münch, C. & Harper, J. W. Quantifying ubiquitin signaling. Mol. Cell 58, 660–676 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, D., Gehringer, M. & Lorenz, S. Developing small-molecule inhibitors of HECT-type ubiquitin ligases for therapeutic applications: challenges and opportunities. ChemBioChem 19, 2123–2135 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. He, C., Zhou, H., Chen, L. & Liu, Z. NEAT1 promotes valproic acid-induced autism spectrum disorder by recruiting YY1 to regulate UBE3A transcription. Mol. Neurobiol. https://doi.org/10.1007/s12035-024-04309-y (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tian, Y., Yu, F., Yun, E., Lin, J.-W. & Man, H.-Y. mRNA nuclear retention reduces AMPAR expression and promotes autistic behavior in UBE3A-overexpressing mice. EMBO Rep. 25, 1282–1309 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sell, G. L. et al. Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice. Sci. Rep. 11, 19414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Simchi, L., Gupta, P. K., Feuermann, Y. & Kaphzan, H. Elevated ROS levels during the early development of Angelman syndrome alter the apoptotic capacity of the developing neural precursor cells. Mol. Psychiatry 28, 2382–2397 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.C.A. is a scholar of the FENS-Kavli Network of Excellence and work in his lab is supported by the Fritz Thyssen Foundation (10.23.2.003MN) and the German Research Foundation (DFG; 515247130 and 536563141). S.L. acknowledges support from the Max Planck Institute for Multidisciplinary Sciences, the Max Planck Society and the SFB1565 (DFG; 469281184, P17).

Author information

Authors and Affiliations

Authors

Contributions

M.C.A. and S.L. conceptualized and wrote the manuscript.

Corresponding authors

Correspondence to Mateusz C. Ambrozkiewicz or Sonja Lorenz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Bernhard Lechtenberg and Noelia Urbán for their contribution to the peer review of this work. Primary Handling Editor: Dimitris Typas, in collaboration with the Nature Structural and Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrozkiewicz, M.C., Lorenz, S. Understanding ubiquitination in neurodevelopment by integrating insights across space and time. Nat Struct Mol Biol 32, 14–22 (2025). https://doi.org/10.1038/s41594-024-01422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-024-01422-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing