Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution and function of chromatin domains across the tree of life

Abstract

The genome of all organisms is spatially organized to function efficiently. The advent of genome-wide chromatin conformation capture (Hi-C) methods has revolutionized our ability to probe the three-dimensional (3D) organization of genomes across diverse species. In this Review, we compare 3D chromatin folding from bacteria and archaea to that in mammals and plants, focusing on topology at the level of gene regulatory domains. In doing so, we consider systematic similarities and differences that hint at the origin and evolution of spatial chromatin folding and its relation to gene activity. We discuss the universality of spatial chromatin domains in all kingdoms, each encompassing one to several genes. We also highlight differences between organisms and suggest that similar features in Hi-C matrices do not necessarily reflect the same biological process or function. Furthermore, we discuss the evolution of domain boundaries and boundary-forming proteins, which indicates that structural maintenance of chromosome (SMC) proteins and the transcription machinery are the ancestral sculptors of the genome. Architectural proteins such as CTCF serve as clade-specific determinants of genome organization. Finally, studies in many non-model organisms show that, despite the ancient origin of 3D chromatin folding and its intricate link to gene activity, evolution tolerates substantial changes in genome organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromosomal and subchromosomal patterns in Hi-C matrices.
Fig. 2: Processes contributing to domain formation.

Similar content being viewed by others

References

  1. Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Acemel, R. D. & Lupiáñez, D. G. Evolution of 3D chromatin organization at different scales. Curr. Opin. Genet. Dev. 78, 102019 (2023).

    CAS  PubMed  Google Scholar 

  3. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    CAS  PubMed  Google Scholar 

  6. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vazquez, J., Belmont, A. S. & Sedat, J. W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 11, 1227–1239 (2001).

    CAS  PubMed  Google Scholar 

  9. Hübner, M. R. & Spector, D. L. Chromatin dynamics. Annu. Rev. Biophys. 39, 471–489 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Harmston, N. et al. Topologically associating domains are ancient features that coincide with metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Kikuta, H. et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17, 545–555 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bolt, C. C. & Duboule, D. The regulatory landscapes of developmental genes. Development 147, dev171736 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Cazet, J. F. et al. New Hydra genomes reveal conserved principles of hydrozoan transcriptional regulation. Genome Res. 33, 283–298 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidbaur, H. et al. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nat. Commun. 13, 2172 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lukyanchikova, V. et al. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat. Commun. 13, 1960 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Marlétaz, F. et al. The little skate genome and the evolutionary emergence of wing-like fins. Nature 616, 495–503 (2023).

    PubMed  PubMed Central  Google Scholar 

  20. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, 6456–6465 (2015).

    Google Scholar 

  23. Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A. & Mirny, L. A. Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb. Symp. Quant. Biol. 82, 45–55 (2017).

    PubMed  Google Scholar 

  24. Mizuguchi, T. et al. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516, 432–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Davidson, I. F. et al. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, 2671–2685 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoencamp, C. & Rowland, B. D. Genome control by SMC complexes. Nat. Rev. Mol. Cell Biol. 24, 633–650 (2023).

    CAS  Google Scholar 

  28. Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Bortle, K. et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 15, R82 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Kahn, T. G. et al. Topological screen identifies hundreds of Cp190- and CTCF-dependent Drosophila chromatin insulator elements. Sci. Adv. 9, eade0090 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pollex, T. et al. Chromatin gene–gene loops support the cross-regulation of genes with related function. Mol. Cell 84, 822–838 (2023).

    PubMed  Google Scholar 

  32. Umbarger, M. A. et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44, 252–264 (2011).

    CAS  PubMed  Google Scholar 

  33. Le, T. B. K., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Marbouty, M. et al. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife 3, e03318 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Dame, R. T., Rashid, F. M. & Grainger, D. C. Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat. Rev. Genet. 21, 227–242 (2020).

    CAS  PubMed  Google Scholar 

  36. Trussart, M. et al. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nat. Commun. 8, 14665 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Wang, X. et al. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. 29, 1661–1675 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Val, M.-E. et al. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. Sci. Adv. 2, e1501914 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Lioy, V. S. et al. Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172, 771–783 (2018).

    CAS  PubMed  Google Scholar 

  40. Le, T. B. & Laub, M. T. Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J. 35, 1582–1595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Takemata, N. & Bell, S. D. Physical and functional compartmentalization of archaeal chromosomes. Cell 179, 165–179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Takemata, N. & Bell, S. D. Multi-scale architecture of archaeal chromosomes. Mol. Cell 81, 473–487 (2021).

    CAS  PubMed  Google Scholar 

  43. Cockram, C., Thierry, A., Gorlas, A., Lestini, R. & Koszul, R. Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization. Mol. Cell 81, 459–472 (2021).

    CAS  PubMed  Google Scholar 

  44. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hsieh, T. H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Oberbeckmann, E., Quililan, K., Cramer, P. & Oudelaar, A. M. In vitro reconstitution of chromatin domains shows a role for nucleosome positioning in 3D genome organization. Nat. Genet. 56, 483–492 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tourdot, E. & Grob, S. Three-dimensional chromatin architecture in plants — general features and novelties. Eur. J. Cell Biol. 102, 151344 (2023).

    CAS  PubMed  Google Scholar 

  48. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).

    CAS  PubMed  Google Scholar 

  49. Feng, S. et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong, P., Tu, X., Liang, Z., Kang, B.-H. & Zhong, S. Plant and animal chromatin three-dimensional organization: similar structures but different functions. J. Exp. Bot. 71, 5119–5128 (2020).

    CAS  PubMed  Google Scholar 

  51. Liu, C., Cheng, Y., Wang, J. & Weigel, D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants 3, 742–748 (2017).

    CAS  PubMed  Google Scholar 

  52. Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895 (2019).

    CAS  PubMed  Google Scholar 

  53. Raymond, O. et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 50, 772–777 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jibran, R. et al. Chromosome-scale scaffolding of the black raspberry (Rubus occidentalis L.) genome based on chromatin interaction data. Hortic. Res. 5, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Hu, Y. et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 51, 739–748 (2019).

    CAS  PubMed  Google Scholar 

  56. Dong, Q. et al. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J. 94, 1141–1156 (2018).

    CAS  PubMed  Google Scholar 

  57. Ricci, W. A. et al. Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants 5, 1237–1249 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun, L. et al. Mapping nucleosome-resolution chromatin organization and enhancer–promoter loops in plants using Micro-C-XL. Nat. Commun. 15, 35 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509 (2017).

    CAS  PubMed  Google Scholar 

  60. Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

    CAS  PubMed  Google Scholar 

  61. Lu, J. Y. et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. 31, 613–630 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Marinov, G. K. & Lynch, M. Diversity and divergence of dinoflagellate histone proteins. G3 6, 397–422 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Wang, M. et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants 4, 90–97 (2018).

    CAS  PubMed  Google Scholar 

  64. Li, E. et al. Long-range interactions between proximal and distal regulatory regions in maize. Nat. Commun. 10, 2633 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fraser, J. et al. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol. Syst. Biol. 11, 852 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Zhan, Y. et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 27, 479–490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Long, H. S. et al. Making sense of the linear genome, gene function and TADs. Epigenetics Chromatin 15, 4 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rinzema, N. J. et al. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nat. Struct. Mol. Biol. 29, 563–574 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kane, L. et al. Cohesin is required for long-range enhancer action at the Shh locus. Nat. Struct. Mol. Biol. 29, 891–897 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ringel, A. R. et al. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 185, 3689–3704 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaushal, A. et al. Essential role of Cp190 in physical and regulatory boundary formation. Sci. Adv. 8, eabl8834 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cavalheiro, G. R. et al. CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles. Sci. Adv. 9, eade1085 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ogiyama, Y., Schuettengruber, B., Papadopoulos, G. L., Chang, J.-M. & Cavalli, G. Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development. Mol. Cell 71, 73–88 (2018).

    CAS  PubMed  Google Scholar 

  78. Luzhin, A. V. et al. Quantitative differences in TAD border strength underly the TAD hierarchy in Drosophila chromosomes. J. Cell. Biochem. 120, 4494–4503 (2019).

    CAS  PubMed  Google Scholar 

  79. Ulianov, S. V. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26, 70–84 (2016).

    PubMed  PubMed Central  Google Scholar 

  80. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228 (2017).

    CAS  PubMed  Google Scholar 

  82. Okhovat, M. et al. TAD evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function. Nat. Commun. 14, 8111 (2023).

    CAS  Google Scholar 

  83. Kaushal, A. et al. CTCF loss has limited effects on global genome architecture in Drosophila despite critical regulatory functions. Nat. Commun. 12, 1011 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nora, E. P. et al. Molecular basis of CTCF binding polarity in genome folding. Nat. Commun. 11, 5612 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kamalyan, S. et al. The N-terminal dimerization domains of human and Drosophila CTCF have similar functionality. Epigenetics Chromatin 17, 9 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mohana, G. et al. Chromosome-level organization of the regulatory genome in the Drosophila nervous system. Cell 186, 3826–3844 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, H. et al. CTCF and R-loops are boundaries of cohesin-mediated DNA looping. Mol. Cell 83, 2856–2871 (2023).

    CAS  PubMed  Google Scholar 

  88. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Eagen, K. P., Aiden, E. L. & Kornberg, R. D. Polycomb-mediated chromatin loops revealed by a subkilobase-resolution chromatin interaction map. Proc. Natl Acad. Sci. USA 114, 8764–8769 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, X. et al. GAGA-associated factor fosters loop formation in the Drosophila genome. Mol. Cell 83, 1519–1526 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Batut, P. J. et al. Genome organization controls transcriptional dynamics during development. Science 375, 566–570 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Denaud, S. et al. A PRE loop at the dac locus acts as a topological chromatin structure that restricts and specifies enhancer–promoter communication. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01375-7 (2024).

    Article  PubMed  Google Scholar 

  93. Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014).

    CAS  PubMed  Google Scholar 

  94. Espinola, S. M. et al. Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development. Nat. Genet. 53, 477–486 (2021).

    CAS  PubMed  Google Scholar 

  95. Pollex, T. et al. Enhancer–promoter interactions become more instructive in the transition from cell-fate specification to tissue differentiation. Nat. Genet. 56, 686–696 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. modENCODE Consortium et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).

  97. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    CAS  Google Scholar 

  98. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Franke, M. et al. CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression. Nat. Commun. 12, 5415 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Niu, L. et al. Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nat. Genet. 53, 1075–1087 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pérez-Rico, Y. A., Barillot, E. & Shkumatava, A. Demarcation of topologically associating domains is uncoupled from enriched CTCF binding in developing zebrafish. iScience 23, 101046 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Ortabozkoyun, H. et al. Members of an array of zinc-finger proteins specify distinct Hox chromatin boundaries. Mol. Cell 84, 3406–3422.e6 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rodriguez-Carballo, E. et al. The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev. 31, 2264–2281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    CAS  PubMed  Google Scholar 

  108. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Williamson, I. et al. Developmentally regulated Shh expression is robust to TAD perturbations. Development 146, dev179523 (2019).

    CAS  PubMed  Google Scholar 

  110. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Despang, A. et al. Functional dissection of the Sox9Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51, 1263–1271 (2019).

    CAS  PubMed  Google Scholar 

  112. Galupa, R. et al. Inversion of a topological domain leads to restricted changes in its gene expression and affects interdomain communication. Development 149, dev200568 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Galupa, R. et al. A conserved noncoding locus regulates random monoallelic Xist expression across a topological boundary. Mol. Cell 77, 352–367 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chakraborty, S. et al. Enhancer–promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness. Nat. Genet. 55, 280–290 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hsieh, T. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hsieh, T.-H. S. et al. Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat. Genet. 54, 1919–1932 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat. Genet. 55, 1048–1056 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Roayaei Ardakany, A., Gezer, H. T., Lonardi, S. & Ay, F. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol. 21, 256 (2020).

    PubMed  PubMed Central  Google Scholar 

  120. Benabdallah, N. S. et al. Decreased enhancer–promoter proximity accompanying enhancer activation. Mol. Cell 76, 473–484 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 604, 571–577 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Xiao, J. Y., Hafner, A. & Boettiger, A. N. How subtle changes in 3D structure can create large changes in transcription. eLife 10, e64320 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Friman, E. T., Flyamer, I. M., Marenduzzo, D., Boyle, S. & Bickmore, W. A. Ultra-long-range interactions between active regulatory elements. Genome Res. 33, 1269–1283 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Beagrie, R. A. et al. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C. Nat. Methods 20, 1037–1047 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Schloissnig, S. et al. The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci. Proc. Natl Acad. Sci. USA 118, e2017176118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nand, A. et al. Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nat. Genet. 53, 618–629 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Marinov, G. K. et al. Transcription-dependent domain-scale three-dimensional genome organization in the dinoflagellate Breviolum minutum. Nat. Genet. 53, 613–617 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Janouškovec, J. et al. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc. Natl Acad. Sci. USA 114, E171–E180 (2017).

    PubMed  Google Scholar 

  129. Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lu, Z. et al. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5, 1250–1259 (2019).

    CAS  PubMed  Google Scholar 

  131. Wu, J. et al. Systematic analysis of intron size and abundance parameters in diverse lineages. Sci. China Life Sci. 56, 968–974 (2013).

    CAS  Google Scholar 

  132. Wendel, J. F. et al. Intron size and genome size in plants. Mol. Biol. Evol. 19, 2346–2352 (2002).

    CAS  PubMed  Google Scholar 

  133. Noack, F. et al. Multimodal profiling of the transcriptional regulatory landscape of the developing mouse cortex identifies Neurog2 as a key epigenome remodeler. Nat. Neurosci. 25, 154–167 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Madani Tonekaboni, S. A., Haibe-Kains, B. & Lupien, M. Large organized chromatin lysine domains help distinguish primitive from differentiated cell populations. Nat. Commun. 12, 499 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, M., Huang, H., Li, J. & Wu, Q. ZNF143 deletion alters enhancer/promoter looping and CTCF/cohesin geometry. Cell Rep. 43, 113663 (2024).

    CAS  PubMed  Google Scholar 

  136. Özdemir, I. & Gambetta, M. C. The role of insulation in patterning gene expression. Genes 10, 767 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Matthews, N. E. & White, R. Chromatin architecture in the fly: living without CTCF/cohesin loop extrusion?: Alternating chromatin states provide a basis for domain architecture in Drosophila. Bioessays 41, e1900048 (2019).

    PubMed  Google Scholar 

  138. Hirano, T. Condensins: organizing and segregating the genome. Curr. Biol. 15, R265–R275 (2005).

    CAS  PubMed  Google Scholar 

  139. Haering, C. H., Löwe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002).

    CAS  PubMed  Google Scholar 

  140. Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).

    CAS  PubMed  Google Scholar 

  141. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kim, E., Barth, R. & Dekker, C. Looping the genome with SMC complexes. Annu. Rev. Biochem. 92, 15–41 (2023).

    CAS  PubMed  Google Scholar 

  143. Barutcu, A. R., Blencowe, B. J. & Rinn, J. L. Differential contribution of steady‐state RNA and active transcription in chromatin organization. EMBO Rep. 20, e48068 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ing-Simmons, E. et al. Independence of chromatin conformation and gene regulation during Drosophila dorsoventral patterning. Nat. Genet. 53, 487–499 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Dequeker, B. J. H. et al. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature 606, 197–203 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Saldaña-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. Li, Y. et al. The structural basis for cohesin–CTCF-anchored loops. Nature 578, 472–476 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    PubMed  Google Scholar 

  149. Huang, H. et al. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Nat. Genet. 53, 1064–1074 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, D. et al. Alteration of genome folding via contact domain boundary insertion. Nat. Genet. 52, 1076–1087 (2020).

    PubMed  PubMed Central  Google Scholar 

  151. Gómez-Díaz, E. & Corces, V. G. Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol. 24, 703–711 (2014).

    PubMed  PubMed Central  Google Scholar 

  152. Kraft, K. et al. Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proc. Natl Acad. Sci. USA 119, e2201883119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.M.I. was supported by funding from the DFG SPP 22.02 ‘3D Genome Architecture in Development and Disease’ (IB139/1-1 and IB139/6-1). Research in the Ibrahim laboratory is supported by ERC starting grant 101076709 ‘SYNREG’. M.-F.S., B.M. and G.C. were supported through the Marie Skłodowska-Curie Innovative Training Network (813327 ‘ChromDesign’ and 813282 ‘PEP-NET’) under the European Union’s Horizon 2020 research and innovation program. I.J. was supported by EMBO long-term fellowship ATLF 559-2018. G.C. was additionally supported by grants from the European Research Council (Advanced Grant 3DEpi, under grant agreement number 788972), the Fondation pour la Recherche Médicale (EQU202303016280), the MSDAVENIR foundation (project EpiMuM-3D), the Centre National pour la Recherche Scientifique, the Agence Nationale de la Recherche (‘PLASMADIFF3D’ project, ANR-18-CE15-0010) and by the French National Cancer Institute (INCa PLBIO18-362).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content and reviewed the literature. M.-F.S., B.M. and D.M.I. wrote an initial draft. I.J., D.M.I. and G.C. reviewed, revised and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Giacomo Cavalli or Daniel M. Ibrahim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Maria Cristina Gambetta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Eytan Zlotorynski and Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szalay, MF., Majchrzycka, B., Jerković, I. et al. Evolution and function of chromatin domains across the tree of life. Nat Struct Mol Biol 31, 1824–1837 (2024). https://doi.org/10.1038/s41594-024-01427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-024-01427-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing