Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Epigenetic mechanisms

H3K27me3 expands the epigenetic control of piRNA transcription

Constitutive heterochromatin can promote piRNA transcription, a crucial step in genome defense. Two studies now show that piRNA transcription in Drosophila is regulated by the dual histone marks H3K27me3 and H3K9me3, and piRNA transcription in Caenorhabditis elegans is enhanced by H3K27me3, gene clustering and phase separation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic determinants of piRNA transcription in Drosophila and C. elegans.

References

  1. Mohn, F., Sienski, G., Handler, D. & Brennecke, J. Cell 157, 1364–1379 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Y.-C. A. et al. Mol. Cell 63, 97–109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andersen, P. R., Tirian, L., Vunjak, M. & Brennecke, J. Nature 549, 54–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baumgartner, L. et al. eLife 11, e80067 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akkouche, A. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-025-01584-8 (2025).

    Article  PubMed  Google Scholar 

  6. Ruby, J. G. et al. Cell 127, 1193–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Cecere, G., Zheng, G. X. Y., Mansisidor, A. R., Klymko, K. E. & Grishok, A. Mol. Cell 47, 734–745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gu, W. et al. Cell 151, 1488–1500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, C. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-025-01533-5 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weng, C. et al. Gene Dev. 33, 90–102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ninova, M. et al. Mol. Cell 77, 556–570.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Strom, A. R. et al. Nature 547, 241–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.C. has received funding from the Institut Pasteur, the CNRS and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement number 101002999. A.M.L.R. received funding from the European Union under the HORIZON-MSCA-2022-PF-01 program no. 101109836 — MOMENTS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germano Cecere.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, A.M.L., Cecere, G. H3K27me3 expands the epigenetic control of piRNA transcription. Nat Struct Mol Biol 32, 1322–1324 (2025). https://doi.org/10.1038/s41594-025-01572-y

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01572-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing