Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene regulation through exon junction complex modularity

Abstract

The exon junction complex (EJC) begins to assemble on the spliceosome, which deposits EJCs upstream of most exon–exon junctions during pre-messenger RNA (mRNA) splicing. EJCs acquire additional alternative modules that define heterogeneous EJCs during pre-mRNA processing to mRNA in the nucleus and after mRNA export into the cytoplasm. In this Review, we discuss the mechanisms of EJC formation, the many roles of the EJC in pre-mRNA and mRNA regulation and how these roles are influenced by EJC composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagrams of the EJC core, RNPS1-EJC and CASC3-EJC and models of RNPS1-EJC assembly on the spliceosome.
Fig. 2: Mechanisms by which EJCs can actively or passively regulate pre-mRNA metabolism.
Fig. 3: EJCs promote the packaging and nuclear export of mRNAs.
Fig. 4: EJCs promote translation by interacting with the translation initiation machinery.
Fig. 5: Mechanisms by which alternative EJC constituents promote UPF1 helicase activity.

Similar content being viewed by others

References

  1. Wilkinson, M. E., Charenton, C. & Nagai, K. RNA splicing by the spliceosome. Annu. Rev. Biochem. 89, 359–388 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Sauliere, J. et al. CLIP–seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat. Struct. Mol. Biol. 19, 1124–1131 (2012). This study establishes that EJCs are deposited on approximately 60–80% of exon–exon junctions in human cells.

    Article  CAS  PubMed  Google Scholar 

  3. Schlautmann Lena, P. & Gehring Niels, H. A day in the life of the exon junction complex. Biomolecules 10, 866 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC–SR protein nexus. Cell 151, 750–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hocq, R., Paternina, J., Alasseur, Q., Genovesio, A. & Le Hir, H. Monitored eCLIP: high accuracy mapping of RNA–protein interactions. Nucleic Acids Res. 46, 11553–11565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mishler, D. M., Christ, A. B. & Steitz, J. A. Flexibility in the site of exon junction complex deposition revealed by functional group and RNA secondary structure alterations in the splicing substrate. RNA 14, 2657–2670 (2008). This study establishes that RNA secondary structure reduces the efficiency of EJC deposition on spliced RNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cho, H. et al. AKT constitutes a signal-promoted alternative exon-junction complex that regulates nonsense-mediated mRNA decay. Mol. Cell 82, 2779–2796 (2022). This study identifies AKT as an EJC constituent that activates UPF1 in NMD and demonstrates that insulin increases the abundance of AKT-containing EJCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mabin, J. W. et al. The exon junction complex undergoes a compositional switch that alters mRNP structure and nonsense-mediated mRNA decay activity. Cell Rep. 25, 2431–2446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Z., Ballut, L., Barbosa, I. & Le Hir, H. Exon junction complexes can have distinct functional flavours to regulate specific splicing events. Sci. Rep. 8, 9509 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Choe, J. et al. eIF4AIII enhances translation of nuclear cap-binding complex-bound mRNAs by promoting disruption of secondary structures in 5′UTR. Proc. Natl Acad. Sci. USA 111, E4577–E4586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boehm, V. et al. Exon junction complexes suppress spurious splice sites to safeguard transcriptome integrity. Mol. Cell 72, 482–495 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Joseph, B. & Lai, E. C. The exon junction complex and intron removal prevent re-splicing of mRNA. PLoS Genet. 17, e1009563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blazquez, L. et al. Exon junction complex shapes the transcriptome by repressing recursive splicing. Mol. Cell 72, 496–509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He, P. C. & He, C. mRNA accessibility within mRNPs as a determinant of gene expression. Trends Biochem. Sci. 49, 199–207 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Mokry, M., et al. Accurate SNP and mutation detection by targeted custom microarray-based genomic enrichment of short-fragment sequencing libraries. Nucleic Acids Res. 38, e116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhan, X., Yan, C., Zhang, X., Lei, J. & Shi, Y. Structure of a human catalytic step I spliceosome. Science 359, 537–545 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Busetto, V. et al. Structural and functional insights into CWC27/CWC22 heterodimer linking the exon junction complex to spliceosomes. Nucleic Acids Res. 48, 5670–5683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alexandrov, A., Colognori, D., Shu, M. D. & Steitz, J. A. Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proc. Natl Acad. Sci. USA 109, 21313–21318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barbosa, I. et al. Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat. Struct. Mol. Biol. 19, 983–990 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Ideue, T., Sasaki, Y. T., Hagiwara, M. & Hirose, T. Introns play an essential role in splicing-dependent formation of the exon junction complex. Genes Dev. 21, 1993–1998 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, W. & Moore, M. J. The spliceosome: disorder and dynamics defined. Curr. Opin. Struct. Biol. 24, 141–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Murachelli, A. G., Ebert, J., Basquin, C., Le Hir, H. & Conti, E. The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nat. Struct. Mol. Biol. 19, 378–386 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Meng, D. et al. A molecular brake that modulates spliceosome pausing at detained introns contributes to neurodegeneration. Protein Cell 14, 318–336 (2023).

    CAS  PubMed  Google Scholar 

  24. Zhang, X. et al. Structure of the human activated spliceosome in three conformational states. Cell Res. 28, 307–322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 29, 63–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schlautmann, L. P. et al. Exon junction complex-associated multi-adapter RNPS1 nucleates splicing regulatory complexes to maintain transcriptome surveillance. Nucleic Acids Res. 50, 5899–5918 (2022). This study provides one example of how EJC constituents regulate alternative splicing and prevent cryptic splice site usage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallmeroth, D. et al. Human UPF3A and UPF3B enable fault-tolerant activation of nonsense-mediated mRNA decay. EMBO J. 41, e109191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palma, M. et al. A role for AKT1 in nonsense-mediated mRNA decay. Nucleic Acids Res. 49, 11022–11037 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hauer, C. et al. Exon junction complexes show a distributional bias toward alternatively spliced mRNAs and against mRNAs coding for ribosomal proteins. Cell Rep. 16, 1588–1603 (2016). This study indicates that alternative EJCs can manifest some target specificity via unknown mechanism(s).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barutcu, A. R. et al. Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol. Cell 82, 1035–1052 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Daguenet, E. et al. Perispeckles are major assembly sites for the exon junction core complex. Mol. Biol. Cell 23, 1765–1782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Degot, S. et al. Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J. Biol. Chem. 279, 33702–33715 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Bensaude, O., Barbosa, I., Morillo, L., Dikstein, R. & Le Hir, H. Exon-junction complex association with stalled ribosomes and slow translation-independent disassembly. Nat. Commun. 15, 4209 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gehring, N. H., Lamprinaki, S., Kulozik, A. E. & Hentze, M. W. Disassembly of exon junction complexes by PYM. Cell 137, 536–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Andersen, C. B. et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968–1972 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Sugimoto, Y. et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein–RNA interactions. Genome Biol. 13, R67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morillo, L. et al. Comprehensive mapping of exon junction complex binding sites reveals universal EJC deposition in Drosophila. BMC Biol. 21, 246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodor, J., Pan, Q., Blencowe, B. J., Eyras, E. & Caceres, J. F. The RNA-binding profile of Acinus, a peripheral component of the exon junction complex, reveals its role in splicing regulation. RNA 22, 1411–1426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akin, D., Newman, J. R., McIntyre, L. M. & Sugrue, S. P. RNA-seq analysis of impact of PNN on gene expression and alternative splicing in corneal epithelial cells. Mol. Vis. 22, 40–60 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Long, J. C. & Caceres, J. F. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Blaustein, M. et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat. Struct. Mol. Biol. 12, 1037–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, G. & Blenis, J. Akt-ivation of RNA splicing. Mol. Cell 53, 519–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, Z. & Fu, X. D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122, 191–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He, P. C. & He, C. m6A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 40, e105977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uzonyi, A. et al. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol. Cell 83, 237–251 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. He, P. C. et al. Exon architecture controls mRNA m6A suppression and gene expression. Science 379, 677–682 (2023). This study (among others, see refs. 46,48,49) determines that EJCs physically preclude m6A methylation in short internal exons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, X., Triboulet, R., Liu, Q., Sendinc, E. & Gregory, R. I. Exon junction complex shapes the m6A epitranscriptome. Nat. Commun. 13, 7904 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo, Z. et al. Exon–intron boundary inhibits m6A deposition, enabling m6A distribution hallmark, longer mRNA half-life and flexible protein coding. Nat. Commun. 14, 4172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hohmann, U. et al. An ATP-gated molecular switch orchestrates human messenger RNA export. Nature https://doi.org/10.1038/s41586-025-09832-z (2025).

  52. Pacheco-Fiallos, B. et al. mRNA recognition and packaging by the human transcription-export complex. Nature 616, 828–835 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gromadzka, A. M., Steckelberg, A. L., Singh, K. K., Hofmann, K. & Gehring, N. H. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Res. 44, 2348–2361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Viphakone, N. et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat. Commun. 3, 1006 (2012).

    Article  PubMed  Google Scholar 

  56. Viphakone, N. et al. Co-transcriptional loading of RNA export factors shapes the human transcriptome. Mol. Cell 75, 310–323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chi, B. et al. A sub-element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18. Nucleic Acids Res. 42, 7305–7318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, K. et al. Intronless mRNAs transit through nuclear speckles to gain export competence. J. Cell Biol. 217, 3912–3929 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thomas, A. et al. RBM33 directs the nuclear export of transcripts containing GC-rich elements. Genes Dev. 36, 550–565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fan, J., et al. ALYREF links 3′-end processing to nuclear export of non-polyadenylated mRNAs. EMBO J. 38, e99910 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huang, Y. & Steitz, J. A. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol. Cell 7, 899–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Ghosh, S., Marchand, V., Gaspar, I. & Ephrussi, A. Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat. Struct. Mol. Biol. 19, 441–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Macchi, P. et al. Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J. Neurosci. 23, 5778–5788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Doyle, M. & Kiebler, M. A. Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30, 3540–3552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kwon, O. S. et al. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat. Commun. 12, 1351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gudikote, J. P., Imam, J. S., Garcia, R. F. & Wilkinson, M. F. RNA splicing promotes translation and RNA surveillance. Nat. Struct. Mol. Biol. 12, 801–809 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Diem, M. D., Chan, C. C., Younis, I. & Dreyfuss, G. PYM binds the cytoplasmic exon-junction complex and ribosomes to enhance translation of spliced mRNAs. Nat. Struct. Mol. Biol. 14, 1173–1179 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Chazal, P. E. et al. EJC core component MLN51 interacts with eIF3 and activates translation. Proc. Natl Acad. Sci. USA 110, 5903–5908 (2013). This study demonstrates that the alternative EJC constituent CASC3 promotes translation through a direct interaction with the eukaryotic translation initiation machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nott, A., Le Hir, H. & Moore, M. J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L. E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ishigaki, Y., Li, X., Serin, G. & Maquat, L. E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Maquat, L. E., Tarn, W. Y. & Isken, O. The pioneer round of translation: features and functions. Cell 142, 368–374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Isken, O. et al. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133, 314–327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoek, T. A. et al. Single-molecule imaging uncovers rules governing nonsense-mediated mRNA decay. Mol. Cell 75, 324–339 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang, J. et al. An interaction between eIF4A3 and eIF3g drives the internal initiation of translation. Nucleic Acids Res. 51, 10950–10969 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Glaviano, A. et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 22, 138 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Richardson, C. J. et al. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr. Biol. 14, 1540–1549 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Ma, X. M., Yoon, S. O., Richardson, C. J., Julich, K. & Blenis, J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 133, 303–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Magnuson, B., Ekim, B. & Fingar, D. C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 441, 1–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Munoz, O., Lore, M. & Jagannathan, S. The long and short of EJC-independent nonsense-mediated RNA decay. Biochem. Soc. Trans. 51, 1121–1129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693–703 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Langer, L. M. et al. UPF1 helicase orchestrates mutually exclusive interactions with the SMG6 endonuclease and UPF2. Nucleic Acids Res. 52, 6036–6048 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kashima, I. et al. SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay. Genes Dev. 24, 2440–2450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gong, C., Kim, Y. K., Woeller, C. F., Tang, Y. & Maquat, L. E. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev. 23, 54–66 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gehring, N. H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005). This study defines the existence of alternative EJCs comprised of different peripheral constituents in a model that continues to be developed.

    Article  CAS  PubMed  Google Scholar 

  89. Gerbracht, J. V. et al. CASC3 promotes transcriptome-wide activation of nonsense-mediated decay by the exon junction complex. Nucleic Acids Res. 48, 8626–8644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kunz, J. B., Neu-Yilik, G., Hentze, M. W., Kulozik, A. E. & Gehring, N. H. Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA 12, 1015–1022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shum, E. Y. et al. The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165, 382–395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yi, Z. et al. Mammalian UPF3A and UPF3B can activate nonsense-mediated mRNA decay independently of their exon junction complex binding. EMBO J. 41, e109202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aznarez, I. et al. Mechanism of nonsense-mediated mRNA decay stimulation by splicing factor SRSF1. Cell Rep. 23, 2186–2198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sanjeev, M. et al. PYM1 limits non-canonical exon junction complex occupancy in a gene architecture dependent manner to tune mRNA expression. Nat. Commun. 16, 8138 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ryu, I. et al. eIF4A3 phosphorylation by CDKs affects NMD during the cell cycle. Cell Rep. 26, 2126–2139 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Lin, L. et al. Epistatic interactions between NMD and TRP53 control progenitor cell maintenance and brain size. Neuron 112, 2157–2176 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Silver, D. L. et al. The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat. Neurosci. 13, 551–558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lupan, B, M., Solecki, R. A., Musso, C. M., Alsina, F. C. & Silver, D. L. The exon junction complex component EIF4A3 is essential for mouse and human cortical progenitor mitosis and neurogenesis. Development 150, dev201619 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zou, D. et al. A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors. Neural Dev. 10, 18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Alsina, F. C. et al. The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton. Cell Rep. 43, 114666 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Favaro, F. P. et al. A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects. Am. J. Hum. Genet. 94, 120–128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Boussion, S. et al. TAR syndrome: clinical and molecular characterization of a cohort of 26 patients and description of novel noncoding variants of RBM8A. Hum. Mutat. 41, 1220–1225 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Weischenfeldt, J. et al. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev. 22, 1381–1396 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mao, H., Brown, H. E. & Silver, D. L. Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex. RNA 23, 23–31 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhong, X. et al. RNPS1 inhibits excessive tumor necrosis factor/tumor necrosis factor receptor signaling to support hematopoiesis in mice. Proc. Natl Acad. Sci. USA 119, e2200128119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Johnson, J. L. et al. Inhibition of Upf2-dependent nonsense-mediated decay leads to behavioral and neurophysiological abnormalities by activating the immune response. Neuron 104, 665–679 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hu, J. et al. Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci. Rep. 6, 20484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, L. et al. Methylation-regulated miR-124-1 suppresses tumorigenesis in hepatocellular carcinoma by targeting CASC3. Oncotarget 7, 26027–26041 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hers, I., Vincent, E. E. & Tavare, J. M. Akt signalling in health and disease. Cell. Signal. 23, 1515–1527 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Casamassimi, A., Federico, A., Rienzo, M., Esposito, S. & Ciccodicola, A. Transcriptome profiling in human diseases: new advances and perspectives. Int. J. Mol. Sci. 18, 1652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Akhtar, J. et al. Promoter-proximal pausing mediated by the exon junction complex regulates splicing. Nat. Commun. 10, 521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Boutz and X. Rambout for comments on the manuscript. Research on EJC modularity in the Maquat laboratory is funded in part by NIH R35 GM149268 to L.E.M. and NIH K99/R00 GM152790 to E.T.A.

Author information

Authors and Affiliations

Authors

Contributions

E.T.A. and L.E.M. conceived of, wrote and modified the Review. E.T.A. generated the figures with suggestions from L.E.M.

Corresponding author

Correspondence to Lynne E. Maquat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Niels Gehring and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Sara Osman, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abshire, E.T., Maquat, L.E. Gene regulation through exon junction complex modularity. Nat Struct Mol Biol 32, 2387–2397 (2025). https://doi.org/10.1038/s41594-025-01724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01724-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing