Table 1 Computed magnetic field parameters.
From: Multivariate time series dataset for space weather data analytics
Magnetic Field Parameters from21 | Description | Formula |
|---|---|---|
ABSNJZH56 | Absolute value of the net current helicity in G2/m | \({H}_{{c}_{abs}}\propto \left|\sum {B}_{z}\cdot {J}_{z}\right|\) |
EPSX*57 | Sum of X-component of normalized Lorentz force | \(\delta {F}_{x}\propto \frac{\sum {B}_{x}{B}_{z}}{\sum {B}^{2}}\) |
EPSY*57 | Sum of Y-component of normalized Lorentz force | \(\delta {F}_{y}\propto \frac{-\sum {B}_{y}{B}_{z}}{\sum {B}^{2}}\) |
EPSZ*57 | Sum of Z-component of normalized Lorentz force | \(\delta {F}_{z}\propto \frac{\sum ({B}_{x}^{2}+{B}_{y}^{2}-{B}_{z}^{2})}{\sum {B}^{2}}\) |
MEANALP58 | Mean twist parameter | \({\alpha }_{total}\propto \frac{\sum {J}_{z}\cdot {B}_{z}}{\sum {B}_{z}^{2}}\) |
MEANGAM56 | Mean inclination angle | \(\bar{\gamma }=\frac{1}{N}\sum {\rm{\arctan }}\left(\frac{{B}_{h}}{{B}_{z}}\right)\) |
MEANGBH56 | Mean value of the horizontal field gradient | \(\bar{\nabla {B}_{h}}=\frac{1}{N}\sum \sqrt{\left(\frac{\partial {B}_{h}}{\partial x}+\frac{\partial {B}_{h}}{\partial y}\right)}\) |
MEANGBT56 | Mean value of the total field gradient | \(\bar{|{\rm{\nabla }}{B}_{tot}|}=\frac{1}{N}\sum \sqrt{\left(\frac{{\rm{\partial }}B}{{\rm{\partial }}x}+\frac{{\rm{\partial }}B}{{\rm{\partial }}y}\right)}\) |
MEANGBZ56 | Mean value of the vertical field gradient | \(\bar{\nabla {B}_{z}}=\frac{1}{N}\sum \sqrt{\left(\frac{\partial {B}_{z}}{\partial x}+\frac{\partial {B}_{z}}{\partial y}\right)}\) |
MEANJZD56 | Mean vertical current density | \(\bar{{J}_{z}}\propto \frac{1}{N}\sum \left(\frac{\partial {B}_{y}}{\partial x}-\frac{\partial {B}_{x}}{\partial y}\right)\) |
MEANJZH56 | Mean current helicity | \(\bar{{H}_{c}}\propto \frac{1}{N}\sum {B}_{z}\cdot {J}_{z}\) |
MEANPOT59 | Mean photospheric excess magnetic energy density | \(\bar{\rho }\propto \frac{1}{N}\sum {\left({{\boldsymbol{B}}}^{Obs}-{{\boldsymbol{B}}}^{Pot}\right)}^{2}\) |
MEANSHR59 | Mean shear angle | \(\bar{\Gamma }=\frac{1}{N}\sum {\rm{\arccos }}\left(\frac{{{\boldsymbol{B}}}^{Obs}\cdot {{\boldsymbol{B}}}^{Pot}}{| {B}^{Obs}| | {B}^{Pot}| }\right)\) |
R_VALUE*60 | Total unsigned flux around high gradient polarity inversion lines using the Blos component | Φ = Σ\(| {B}_{los}| .dA\,(within\,R\,mask)\) |
SAVNCPP56 | Sum of the absolute value of the net current per polarity | \({J}_{{z}_{sum}}\propto \left|\sum ^{{B}_{z}^{+}}{J}_{z}dA\right|+\left|\sum ^{{B}_{z}^{-}}{J}_{z}dA\right|\) |
SHRGT4556 | Area with shear angle greater than 45 degrees | \(\frac{{\rm{Area}}\,{\rm{with}}\,{\rm{Shear}} > 4{5}^{\circ }}{{\rm{Total}}\,{\rm{Area}}}\) |
TOTBSQ*57 | Total magnitude of Lorentz force | \(F\propto \sum {B}^{2}\) |
TOTFX*57 | Sum of X-component of Lorentz force | \({F}_{x}\propto \sum {B}_{x}{B}_{z}dA\) |
TOTFY*57 | Sum of Y-component of Lorentz force | \({F}_{y}\propto \sum {B}_{y}{B}_{z}dA\) |
TOTFZ*57 | Sum of Z-component of Lorentz force | \({F}_{z}\propto \sum ({B}_{x}^{2}+{B}_{y}^{2}-{B}_{z}^{2})dA\) |
TOTPOT56 | Total photospheric magnetic energy density | \({\rho }_{tot}\propto \sum {\left({\overrightarrow{{\boldsymbol{B}}}}^{Obs}-{\overrightarrow{{\boldsymbol{B}}}}^{Pot}\right)}^{2}dA\) |
TOTUSJH56 | Total unsigned current helicity | \({H}_{{c}_{total}}\propto \sum {B}_{z}\cdot {J}_{z}\) |
TOTUSJZ56 | Total unsigned vertical current | \({J}_{{z}_{total}}=\sum | {J}_{z}| dA\) |
USFLUX56 | Total unsigned flux in Maxwells | Φ = \(\sum | {B}_{z}| dA\) |