Table 1 Computed magnetic field parameters.

From: Multivariate time series dataset for space weather data analytics

Magnetic Field Parameters from21

Description

Formula

ABSNJZH56

Absolute value of the net current helicity in G2/m

\({H}_{{c}_{abs}}\propto \left|\sum {B}_{z}\cdot {J}_{z}\right|\)

EPSX*57

Sum of X-component of normalized Lorentz force

\(\delta {F}_{x}\propto \frac{\sum {B}_{x}{B}_{z}}{\sum {B}^{2}}\)

EPSY*57

Sum of Y-component of normalized Lorentz force

\(\delta {F}_{y}\propto \frac{-\sum {B}_{y}{B}_{z}}{\sum {B}^{2}}\)

EPSZ*57

Sum of Z-component of normalized Lorentz force

\(\delta {F}_{z}\propto \frac{\sum ({B}_{x}^{2}+{B}_{y}^{2}-{B}_{z}^{2})}{\sum {B}^{2}}\)

MEANALP58

Mean twist parameter

\({\alpha }_{total}\propto \frac{\sum {J}_{z}\cdot {B}_{z}}{\sum {B}_{z}^{2}}\)

MEANGAM56

Mean inclination angle

\(\bar{\gamma }=\frac{1}{N}\sum {\rm{\arctan }}\left(\frac{{B}_{h}}{{B}_{z}}\right)\)

MEANGBH56

Mean value of the horizontal field gradient

\(\bar{\nabla {B}_{h}}=\frac{1}{N}\sum \sqrt{\left(\frac{\partial {B}_{h}}{\partial x}+\frac{\partial {B}_{h}}{\partial y}\right)}\)

MEANGBT56

Mean value of the total field gradient

\(\bar{|{\rm{\nabla }}{B}_{tot}|}=\frac{1}{N}\sum \sqrt{\left(\frac{{\rm{\partial }}B}{{\rm{\partial }}x}+\frac{{\rm{\partial }}B}{{\rm{\partial }}y}\right)}\)

MEANGBZ56

Mean value of the vertical field gradient

\(\bar{\nabla {B}_{z}}=\frac{1}{N}\sum \sqrt{\left(\frac{\partial {B}_{z}}{\partial x}+\frac{\partial {B}_{z}}{\partial y}\right)}\)

MEANJZD56

Mean vertical current density

\(\bar{{J}_{z}}\propto \frac{1}{N}\sum \left(\frac{\partial {B}_{y}}{\partial x}-\frac{\partial {B}_{x}}{\partial y}\right)\)

MEANJZH56

Mean current helicity

\(\bar{{H}_{c}}\propto \frac{1}{N}\sum {B}_{z}\cdot {J}_{z}\)

MEANPOT59

Mean photospheric excess magnetic energy density

\(\bar{\rho }\propto \frac{1}{N}\sum {\left({{\boldsymbol{B}}}^{Obs}-{{\boldsymbol{B}}}^{Pot}\right)}^{2}\)

MEANSHR59

Mean shear angle

\(\bar{\Gamma }=\frac{1}{N}\sum {\rm{\arccos }}\left(\frac{{{\boldsymbol{B}}}^{Obs}\cdot {{\boldsymbol{B}}}^{Pot}}{| {B}^{Obs}| | {B}^{Pot}| }\right)\)

R_VALUE*60

Total unsigned flux around high gradient polarity inversion lines using the Blos component

Φ = Σ\(| {B}_{los}| .dA\,(within\,R\,mask)\)

SAVNCPP56

Sum of the absolute value of the net current per polarity

\({J}_{{z}_{sum}}\propto \left|\sum ^{{B}_{z}^{+}}{J}_{z}dA\right|+\left|\sum ^{{B}_{z}^{-}}{J}_{z}dA\right|\)

SHRGT4556

Area with shear angle greater than 45 degrees

\(\frac{{\rm{Area}}\,{\rm{with}}\,{\rm{Shear}} > 4{5}^{\circ }}{{\rm{Total}}\,{\rm{Area}}}\)

TOTBSQ*57

Total magnitude of Lorentz force

\(F\propto \sum {B}^{2}\)

TOTFX*57

Sum of X-component of Lorentz force

\({F}_{x}\propto \sum {B}_{x}{B}_{z}dA\)

TOTFY*57

Sum of Y-component of Lorentz force

\({F}_{y}\propto \sum {B}_{y}{B}_{z}dA\)

TOTFZ*57

Sum of Z-component of Lorentz force

\({F}_{z}\propto \sum ({B}_{x}^{2}+{B}_{y}^{2}-{B}_{z}^{2})dA\)

TOTPOT56

Total photospheric magnetic energy density

\({\rho }_{tot}\propto \sum {\left({\overrightarrow{{\boldsymbol{B}}}}^{Obs}-{\overrightarrow{{\boldsymbol{B}}}}^{Pot}\right)}^{2}dA\)

TOTUSJH56

Total unsigned current helicity

\({H}_{{c}_{total}}\propto \sum {B}_{z}\cdot {J}_{z}\)

TOTUSJZ56

Total unsigned vertical current

\({J}_{{z}_{total}}=\sum | {J}_{z}| dA\)

USFLUX56

Total unsigned flux in Maxwells

Φ = \(\sum | {B}_{z}| dA\)

  1. Parameters marked with asteriks (*) are discussed in21, but are not available in SHARP headers.