Table 2 Classification performance on PTB-XL benchmarking tasks26 (macro AUC on the PTB-XL test set) achieved using different feature sets using different PTB-XL label (sub)sets as targets (all: all 71 statements, diag: 44 diagnostic statements, sub-diag: 23 aggregated, sub-diagnostic statements, super-diag: 5 aggregated, super-diagnostic statements, form: 19 form-related statements, rhythm: 12 rhythm-related statements).

From: PTB-XL+, a comprehensive electrocardiographic feature dataset

Model/Features

all

diag

sub-diag.

super-diag.

form

rhythm

CNN/raw data26

0.925

0.937

0.929

0.928

0.896

0.957

RF/Uni-G(full)

0.875

0.907

0.886

0.921

0.803

0.945

RF/12SL(full)

0.856

0.906

0.878

0.924

0.794

0.870

RF/ECGDeli(full)

0.864

0.891

0.883

0.899

0.776

0.964

RF/Uni-G(Uni-G ∩ 12SL)

0.855

0.890

0.889

0.923

0.773

0.881

RF/12SL(Uni-G ∩ 12SL)

0.866

0.892

0.881

0.922

0.796

0.860

RF/Uni-G(Uni-G ∩ ECGDeli)

0.863

0.902

0.888

0.916

0.769

0.892

RF/ECGDeli(Uni-G ∩ ECGDeli)

0.855

0.898

0.863

0.902

0.753

0.906

RF/12SL(12SL ∩ ECGDeli)

0.857

0.894

0.877

0.919

0.781

0.872

RF/ECGDeli(12SL ∩ ECGDeli)

0.855

0.884

0.889

0.903

0.764

0.902

  1. Best-performing feature-based approaches in each category are marked in bold face. Overall best-performing approaches are underlined.