Table 14 Geospatial datasets provided in this article and their names in the repository8.

From: MUSE-RASA captures human dimension in climate-energy-economic models via global geoAI-ML agent datasets

Geospatial dataset

Name in repository

Format

To define agent characterisation:

 1. Global clustered GDPpc

GDPpc_km2_shapes

Shape [.shp]

 2. Global clustered HD

HD_km2_shapes

Shape [.shp]

 3. Global clustered HDpc

HDpc_km2_shapes

Shape [.shp]

To define agent heterogeneity:

 4. Global agents with two characteristics

Agents_GDPpc_HDpc

Shape [.shp]

 5. Global agents with three characteristics

Agents_GDPpc_HDpc_HD

Shape [.shp]

 6. Dataset to define agent diversity

Global_agents_diversity

Text [.csv]

 7. Dataset to define agent evolution in space and time

Global_agents_evolution

Text [.csv]

 8. Dataset to define decision-making process in China

China_dm_agents_survey

Text [.csv]

 9. Dataset to define decision-making process in Ecuador

Ecuador_dm_agents_survey

Text [.csv]

 10. Dataset of global energy demand by agents and regions

Global_agents_demand

Text [.csv]

 11. Dataset of global geospatial cross validation

Spatial_cross_validation

Text [.csv]

 12. Dataset of global geospatial cross validation errors

Spatial_cross_validation_errors

Text [.csv]

 13. Dataset of global MUSE region shapes

Regions_shapes

Shape [.shp]

  1. Viewing or using shape files [.shp] requires GIS software, such as the open-source QGIS application or R geospatial packages.