Table 7 Definition of spatial agents with multiple parameters.

From: MUSE-RASA captures human dimension in climate-energy-economic models via global geoAI-ML agent datasets

Definition

Equations

 

Parameter q, pq, in zone n, zn, of spatial agent with multi-attributes

\(Sp{A}_{Mch,{z}_{n}}\left({p}_{q}\right)=\mathop{\sum }\limits_{i=1}^{k}{p}_{q,i}\)

(Eq. 8)

Spatial agent with multi-attributes and multi-parameters, p1pq, in zone n, zn.

\(Sp{A}_{Mch,{z}_{n}}\left({p}_{1},\ldots ,{p}_{q}\right)=\left\{Sp{A}_{Mch,{z}_{1}}\left({p}_{1}\right),\ldots ,Sp{A}_{Mch,{z}_{n}}\left({p}_{q}\right)\right\}\)

(Eq. 9)

Spatial agent with multi-attributes and multi-parameters, p1→pq, for a country or region with n zones, z1→n.

\(Sp{A}_{Mch,{z}_{1\to n}}\left({p}_{1},\ldots ,{p}_{q}\right)=\left\{\begin{array}{ccc}Sp{A}_{Mch,{z}_{1}}\left({p}_{1}\right) & \cdots & Sp{A}_{Mch,{z}_{1}}\left({p}_{q}\right)\\ \vdots & \cdots & \vdots \\ Sp{A}_{Mch,{z}_{n}}\left({p}_{1}\right) & \cdots & Sp{A}_{Mch,{z}_{n}}\left({p}_{q}\right)\end{array}\right\}\)

(Eq. 10)

  1. The parametrisation of a spatial agent SpA defined from the intersection of multiple spatial attributes Mch in Zone 1, z1, with one parameter p1, is given by \({SpA}_{Mch,{z}_{1}}\left({p}_{1}\right)=\mathop{\sum }\limits_{i=1}^{k}{p}_{1,i}\).