Table 3 Comparison of benchmark evaluation results for target detection and recognition.

From: A Large-Scale Synthetic Benchmark Dataset for Non-Cooperative Space Target Perception

Method

mAP

Flops(G)

Params(M)

backbone

mAP_small

mAP_medium

mAP_large

Faster R-CNN

87.0

208

41.4

Resnet50

75.8

85.4

91.5

YOLOv3

72.6

11.6

61.6

Darknet53

60.4

69.9

78.7

Centernet

80.8

12.1

32.1

Resnet50

65.2

77.5

87.3

DETR

78.3

96.5

41.6

Resnet50

49.6

76.6

86.7

Sparse R-CNN

93.7

152

106

Resnet50

84.3

92.6

97.3

YOLOF

87.3

99.0

42.6

Resnet50

77.1

85.8

91.0

Deformable DETR

78.0

193

40.1

Resnet50

47.9

77.3

84.4

YOLOX

84.5

13.3

8.94

CSPdarknet

72.3

82.4

89.2

ViTDet

84.7

279

101

ViT-base

70.9

83.0

89.5

DiffusionDet

88.5

105

111

Resnet50

75.0

86.6

93.3