Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Chromosome-scale assembly and annotation of Phytophthora capsici isolate BYA5
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 05 January 2026

Chromosome-scale assembly and annotation of Phytophthora capsici isolate BYA5

  • Yiman Wan1,2 na1,
  • Fuqiang Zhu2,3 na1,
  • Meng Zhang2,
  • Xiaohui Li2,4,
  • Chunxue Xie2,5,
  • Shenglan Gao2,6,
  • Qunqing Wang  ORCID: orcid.org/0000-0002-3424-80181 &
  • …
  • Yuan Chen2,6 

Scientific Data , Article number:  (2026) Cite this article

  • 1021 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Genome assembly algorithms
  • Pathogens

Abstract

Phytophthora capsici is a globally widespread oomycete pathogen that causes severe damage to diverse host plants, posing major agricultural challenges. Here, we present a high-quality, chromosome-level genome assembly of P. capsici isolate BYA5 using PacBio HiFi, ultralong Oxford Nanopore, and Hi-C sequencing data. The assembled genome spans 83.96 Mb and comprises 18 chromosomes, capturing all centromeres and most telomeres (32/36). The assembled genome exhibits a contiguous N50 of 3.84 Mb, representing the first chromosome-level genome sequence of a pathogenic P. capsici. A total of 15,688 protein-coding genes were annotated, including 337 RxLRs and 115 Crinkler (CRN) effectors. This high-quality reference genome provides a valuable resource for advancing our understanding of oomycete pathobiology and evolution, facilitating further research on virulence mechanisms and host-pathogen interactions.

Similar content being viewed by others

An annotated near-complete sequence assembly of the Magnaporthe oryzae 70-15 reference genome

Article Open access 07 May 2025

Chromosome-level genome assembly of the predatory flower bug Orius strigicollis

Article Open access 20 May 2025

A chromosome-level genome assembly of critically endangered Ochetobius elongatus

Article Open access 19 December 2024

Data availability

The authors confirm that the data supporting the findings of this study are available in the National Genomics Data Center (NGDC), and National Center for Biotechnology Information (NCBI), and figshare, can be accessed via. https://ngdc.cncb.ac.cn/gwh/Assembly/92621/show (assembled genome in NGDC). https://ngdc.cncb.ac.cn/gsa/browse/CRA025046 (raw data in NGDC). https://identifiers.org/ncbi/insdc.gca:GCA_053541045.1 (assembled genome in NCBI). https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA1248058 (raw data in NCBI). https://doi.org/10.6084/m9.figshare.28856261 (genome annotations archive in figshare).

Code availability

All commands and pipelines used in data processing were executed according to the manual and protocols of the corresponding bioinformatic software and described in the Methods section, along with the versions. No custom code was generated for these analyses.

References

  1. Lamour, K. H., Stam, R., Jupe, J. & Huitema, E. The oomycete broad-host-range pathogen Phytophthora capsici. Molecular Plant Pathology 13, 329–337, https://doi.org/10.1111/j.1364-3703.2011.00754.x (2012).

    Google Scholar 

  2. Kamoun, S. et al. The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology 16, 413–434, https://doi.org/10.1111/mpp.12190 (2015).

    Google Scholar 

  3. Kamoun, S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review Of Phytopathology 44, 41–60, https://doi.org/10.1146/annurev.phyto.44.070505.143436 (2006).

    Google Scholar 

  4. Białas, A. et al. Lessons in Effector and NLR Biology of Plant-Microbe Systems. Molecular Plant-Microbe Interactions: MPMI 31, 34–45, https://doi.org/10.1094/MPMI-08-17-0196-FI (2018).

    Google Scholar 

  5. Anderson, R. G., Deb, D., Fedkenheuer, K. & McDowell, J. M. Recent Progress in RXLR Effector Research. Molecular Plant-Microbe Interactions: MPMI 28, 1063–1072, https://doi.org/10.1094/MPMI-01-15-0022-CR (2015).

    Google Scholar 

  6. Birch, P. R. J., Rehmany, A. P., Pritchard, L., Kamoun, S. & Beynon, J. L. Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology 14, 8–11, https://doi.org/10.1016/j.tim.2005.11.007 (2006).

    Google Scholar 

  7. Zhang, Z. et al. Complete telomere-to-telomere genomes uncover virulence evolution conferred by chromosome fusion in oomycete plant pathogens. Nature Communications 15, 4624, https://doi.org/10.1038/s41467-024-49061-y (2024).

    Google Scholar 

  8. Tsykun, T. et al. High-Quality Genome of the Tree Pathogen Phytophthora plurivora—A Novel Resource for Epidemiological Research. PhytoFrontiersTM 3, 888–892, https://doi.org/10.1094/PHYTOFR-05-23-0065-A (2023).

    Google Scholar 

  9. Matson, M. E. H., Liang, Q., Lonardi, S. & Judelson, H. S. Karyotype variation, spontaneous genome rearrangements affecting chemical insensitivity, and expression level polymorphisms in the plant pathogen Phytophthora infestans revealed using its first chromosome-scale assembly. PLOS Pathogens 18, e1010869, https://doi.org/10.1371/journal.ppat.1010869 (2022).

    Google Scholar 

  10. Cox, M. P. et al. Chromosome-level assembly of the Phytophthora agathidicida genome reveals adaptation in effector gene families. Frontiers in Microbiology 13, 1038444, https://doi.org/10.3389/fmicb.2022.1038444 (2022).

    Google Scholar 

  11. Lamour, K. H. et al. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Molecular Plant-Microbe Interactions: MPMI 25, 1350–1360, https://doi.org/10.1094/MPMI-02-12-0028-R (2012).

    Google Scholar 

  12. Reyes-Tena, A. et al. Genome Sequence Data of Six Isolates of Phytophthora capsici from Mexico. Molecular Plant-Microbe Interactions: MPMI 32, 1267–1269, https://doi.org/10.1094/MPMI-01-19-0014-A (2019).

    Google Scholar 

  13. Lee, J. H., Siddique, M. I., Kwon, J. K. & Kang, B.-C. Comparative Genomic Analysis Reveals Genetic Variation and Adaptive Evolution in the Pathogenicity-Related Genes of Phytophthora capsici. Frontiers in Microbiology 12, 69413, https://doi.org/10.3389/fmicb.2021.694136 (2021).

    Google Scholar 

  14. Villanueva, O., Nguyen, H. D. T. & Ellouze, W. Comparative Genomic and Secretome Analysis of Phytophthora capsici Strains: Exploring Pathogenicity and Evolutionary Dynamics. Agronomy 14, 2623, https://doi.org/10.3390/agronomy14112623 (2024).

    Google Scholar 

  15. Szadkowski, E. et al. Phytophthora capsici genome assembly for two isolates using long-read Oxford Nanopore Technology sequencing. Microbiology Resource Announcements 12, e0019623, https://doi.org/10.1128/MRA.00196-23 (2023).

    Google Scholar 

  16. Cui, C., Herlihy, J. H., Bombarely, A., McDowell, J. M. & Haak, D. C. Draft Assembly of Phytophthora capsici from Long-Read Sequencing Uncovers Complexity. Molecular Plant-Microbe Interactions: MPMI 32, 1559–1563, https://doi.org/10.1094/MPMI-04-19-0103-TA (2019).

    Google Scholar 

  17. Shi, J. et al. Improved Whole-Genome Sequence of Phytophthora capsici Generated by Long-Read Sequencing. Molecular Plant-Microbe Interactions: MPMI 34, 866–869, https://doi.org/10.1094/MPMI-12-20-0356-A (2021).

    Google Scholar 

  18. A, J. et al. Pathogenomics Insights into Phytophthora capsici and Phytophthora tropicalis-Sibling Species Causing Black Pepper Foot Rot: Genomic Architecture. Metabolic Pathways, and Effector Diversity. Gene 947, 149328, https://doi.org/10.1016/j.gene.2025.149328 (2025).

    Google Scholar 

  19. Wang, W. et al. Functional Analysis of the C-5 Sterol Desaturase PcErg3 in the Sterol Auxotrophic Oomycete Pathogen Phytophthora capsici. Frontiers in Microbiology 10, 13, https://doi.org/10.3389/fmicb.2022.811132 (2022).

    Google Scholar 

  20. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18, 170–175, https://doi.org/10.1038/s41592-020-01056-5 (2021).

    Google Scholar 

  21. Winkworth, R. et al. Comparative Analyses of Complete Peronosporaceae (Oomycota) Mitogenome Sequences-Insights into Structural Evolution and Phylogeny. Genome Biology and Evolution 14, evac049, https://doi.org/10.1093/gbe/evac049 (2022).

    Google Scholar 

  22. Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants 5, 833–845, https://doi.org/10.1038/s41477-019-0487-8 (2019).

    Google Scholar 

  23. Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Systems 3, 99–101, https://doi.org/10.1016/j.cels.2015.07.012 (2016).

    Google Scholar 

  24. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biology 17, 239, https://doi.org/10.1186/s13059-016-1103-0 (2016).

    Google Scholar 

  25. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biology 21, 245, https://doi.org/10.1186/s13059-020-02134-9 (2020).

    Google Scholar 

  26. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34, W435–439, https://doi.org/10.1093/nar/gkl200 (2006).

    Google Scholar 

  27. Wang, Y., Pruitt, R. N., Nürnberger, T. & Wang, Y. Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology 20, 449–464, https://doi.org/10.1038/s41579-022-00710-3 (2022).

    Google Scholar 

  28. Wilson, R. A. & McDowell, J. M. Recent advances in understanding of fungal and oomycete effectors. Current Opinion In Plant Biology 68, 102228, https://doi.org/10.1016/j.pbi.2022.102228 (2022).

    Google Scholar 

  29. Fernandez, J. The Phantom Menace: latest findings on effector biology in the rice blast fungus. aBIOTECH 4, 140–154, https://doi.org/10.1007/s42994-023-00099-4 (2023).

    Google Scholar 

  30. Zheng, Z. et al. Atypical RXLR effectors are involved in Phytophthora cactorum pathogenesis. aBIOTECH 6, 50–62, https://doi.org/10.1007/s42994-025-00198-4 (2025).

    Google Scholar 

  31. Miao, J., Chi, Y., Lin, D., Tyler, B. M. & Liu, X. Mutations in ORP1 Conferring Oxathiapiprolin Resistance Confirmed by Genome Editing using CRISPR/Cas9 in Phytophthora capsici and P. sojae. Phytopathology 108, 1412–1419, https://doi.org/10.1094/PHYTO-01-18-0010-R (2018).

    Google Scholar 

  32. Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S. & Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols 1, 2320–2325, https://doi.org/10.1038/nprot.2006.384 (2006).

    Google Scholar 

  33. Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods San Diego Calif 58, 268–276, https://doi.org/10.1016/j.ymeth.2012.05.001 (2012).

    Google Scholar 

  34. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770, https://doi.org/10.1093/bioinformatics/btr011 (2011).

    Google Scholar 

  35. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890, https://doi.org/10.1093/bioinformatics/bty560 (2018).

    Google Scholar 

  36. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37, 907–915, https://doi.org/10.1038/s41587-019-0201-4 (2019).

    Google Scholar 

  37. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. PNAS 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).

    Google Scholar 

  38. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Research 14, 988–995, https://doi.org/10.1101/gr.1865504 (2004).

    Google Scholar 

  39. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11, 1650–1667, https://doi.org/10.1038/nprot.2016.095 (2016).

    Google Scholar 

  40. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644–652, https://doi.org/10.1038/nbt.1883 (2011).

    Google Scholar 

  41. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 9, R7, https://doi.org/10.1186/gb-2008-9-1-r7 (2008).

    Google Scholar 

  42. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33, D121–124, https://doi.org/10.1093/nar/gki081 (2005).

    Google Scholar 

  43. Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Research 49, 9077–9096, https://doi.org/10.1093/nar/gkab688 (2021).

    Google Scholar 

  44. Sperschneider, J. & Dodds, P. N. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. Molecular Plant-Microbe Interactions. MPMI 35, 146–156, https://doi.org/10.1094/mpmi-08-21-0201-r (2022).

    Google Scholar 

  45. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340, 783–795, https://doi.org/10.1016/j.jmb.2004.05.028 (2004).

    Google Scholar 

  46. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305, 567–580, https://doi.org/10.1006/jmbi.2000.4315 (2001).

    Google Scholar 

  47. Wan, Y. This study aimed to obtain high quality genomic sequence of Phytophthora capsica isolate BYA5. BioProject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1248058 (2025).

  48. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33296427 (2025).

  49. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33296426 (2025).

  50. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33296420 (2025).

  51. NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_053541045.1 (2025).

  52. NGDC Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA025046 (2025).

  53. NGDC Genome Sequence Archive https://ngdc.cncb.ac.cn/gwh/Assembly/92621/show (2025).

  54. Wan, Y. The annotated file for Phytophthora capsici isolate BYA5. Figshare https://doi.org/10.6084/m9.figshare.28856261 (2025).

  55. Lin, Y. et al. quarTeT: a telomere-to-telomere toolkit for gap-free genome assembly and centromeric repeat identification. Horticulture Research 10, uhad127, https://doi.org/10.1093/hr/uhad127 (2023).

    Google Scholar 

  56. Brown, M. R., Manuel Gonzalez de La Rosa, P. & Blaxter, M. tidk: a toolkit to rapidly identify telomeric repeats from genomic datasets. Bioinformatics 41, btaf049, https://doi.org/10.1093/bioinformatics/btaf049 (2025).

    Google Scholar 

  57. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Taishan Scholar Foundation of Shandong Province (tsqn202103162, tsqn202211093), Key R&D Program of Shandong Province, China (2024CXPT03), Yunnan Department of Science and Technology-Development and adoption of innovative ‘green’ management tools against insect pest and disease on tomato and pepper in Yunnan (No. 202502AQ370001), the Natural Science Foundation of Shandong Province (SYS202206), National Natural Science Foundation of China (32172387). We thank Dr. Xili Liu of Northwest Agriculture and Forestry University for providing P. capsici isolate BYA5. We thank Dr. Daolong Dou of Nanjing Agricultural University for providing the genomic data and GFF annotation files of P. capsici isolate LT263. This work was supported by the bioinformatics services from Novogene Bioinformatics Technology Co., Ltd. (Tianjin, China), particularly in data processing and genomic annotation.

Author information

Author notes
  1. These authors contributed equally: Yiman Wan, Fuqiang Zhu.

Authors and Affiliations

  1. College of Plant Protection, Shandong Agricultural University, Tai’an, 271018, Shandong, China

    Yiman Wan & Qunqing Wang

  2. State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China

    Yiman Wan, Fuqiang Zhu, Meng Zhang, Xiaohui Li, Chunxue Xie, Shenglan Gao & Yuan Chen

  3. State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, China

    Fuqiang Zhu

  4. College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China

    Xiaohui Li

  5. State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, 271018, China

    Chunxue Xie

  6. Southwest United Graduate School, Kunming, 650092, China

    Shenglan Gao & Yuan Chen

Authors
  1. Yiman Wan
    View author publications

    Search author on:PubMed Google Scholar

  2. Fuqiang Zhu
    View author publications

    Search author on:PubMed Google Scholar

  3. Meng Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaohui Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Chunxue Xie
    View author publications

    Search author on:PubMed Google Scholar

  6. Shenglan Gao
    View author publications

    Search author on:PubMed Google Scholar

  7. Qunqing Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Yuan Chen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.C. and Q.W. conceived and supervised the project. Y.W., F.Z., C.X. and X.L. collected the samples and strain preservation; M.Z. and Y.W. performed the genomic data analysis; S.G. submitted the genome assembly data to the NCBI database. Y.W. and F.Z. drafted the initial version of the manuscript. Q.W. and Y.C. finalized the manuscript. All authors read and prove the final version of the manuscript.

Corresponding authors

Correspondence to Qunqing Wang or Yuan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Distribution of RxLR and CRN effectors in the P. capsici isolate BYA5.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Zhu, F., Zhang, M. et al. Chromosome-scale assembly and annotation of Phytophthora capsici isolate BYA5. Sci Data (2026). https://doi.org/10.1038/s41597-025-06501-8

Download citation

  • Received: 28 April 2025

  • Accepted: 18 December 2025

  • Published: 05 January 2026

  • DOI: https://doi.org/10.1038/s41597-025-06501-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology