Abstract
Creeping bentgrass (Agrostis stolonifera) is a widely used cool-season turfgrass valued for its fine texture and ability to form dense, uniform turfs. However, its complex allotetraploid genome and high repetitive content have posed challenges for genomic research and molecular breeding. Here, we report a haplotype-resolved chromosome-level genome assembly generated using PacBio HiFi and Oxford Nanopore sequencing with Omni-C scaffolding. The final assembly spans 5.4 Gb, with a scaffold N50 of 187.9 Mb and comprises 28 pseudochromosomes representing fully phased haplotypes (2n = 4x = 28). BUSCO analysis indicated 98.8% completeness, indicating the high quality of the assembly. We annotated 146,216 protein-coding genes and found that transposable elements account for 79.8% of the genome, dominated by LTR-Gypsy elements. Subgenome-specific LTR clustering and comparative genomic alignments supported an allopolyploid origin involving two diverged progenitors. This high-quality genome provides a foundational resource for functional genomics and breeding efforts to improve disease resistance, abiotic stress tolerance, and turf quality.
Similar content being viewed by others
Code availability
All data processing commands and pipelines were executed in accordance with the instructions and guidelines provided by the respective bioinformatic software. No custom scripts or code were used in this study.
References
Beard, J. B. Turfgrass: science and culture. (Prentice-Hall, 1972).
Cook, R. Oregon Seed Certification. (Oregon State Univ. Press, Corvallis, OR, 1996).
Turgeon, A. J. Turfgrass species. In: Turfgrass management. p. 57–110 (Prentice Hall, Upper Saddle River, NJ, 2012).
Warnke, S. Creeping bentgrass (Agrostis stolonifera L.). In: M. D. Casler, R. R. Duncan, editors, Turfgrass biology, genetics, and breeding. p. 175–185 (John Wiley & Sons, Hoboken, NJ, 2003).
Xu, Q. & Huang, B. Growth and physiological responses of creeping bentgrass to heat stress. Crop Sci 40(5), 1363–1368 (2000).
Beard, J. B. & Kenna, M. P. Water quality and quantity issues for turfgrasses in urban landscapes (2008).
Jones, K. Species determination in Agrostis. Part II. The significance of chromosome pairing in the tetraploid hybrids of Agrostis canina subsp. Montana Hartm., A. tenius Sibth., and A. stolonifera L. Journal of Genetics. 54, 377–393 (1956).
Luo, H. et al. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Reports 22, 645–652 (2004).
Yu, T. T. et al. Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas. 133(3), 229–33 (2000).
Xiao, L. & Ha, S. B. Efficient selection and regeneration of creeping bentgrass transformants following particle bombardment. Plant Cell Rep. 16(12), 874–878 (1997).
Yamamato, I. & Duich, J. M. Electrophoretic identification of cross-pollinated bentgrass species and cultivars. Crop Sci. 34(3), 792–798 (1994).
Golembiewski, R. C., Danneberger, T. K. & Sweeney, P. M. Potential of RAPD markers for use in the identification of creeping bentgrass cultivars. Crop Sci. 37(1), 212–214 (1997).
Warnke, S. E., Douches, D. S. & Branham, B. E. Relationships among creeping bentgrass cultivars based on isozyme polymorphisms. Crop Sci. 37(1), 203–207 (1997).
Warnke, S. E., Douches, D. S. & Branham, B. E. Isozyme analysis support allotetraploid inheritance in tetraploid creeping bentgrass (Agrostis palustris Huds.). Crop Sci. 38, 801–805 (1998).
Caceres, M. E., Pulpilli, F., Piano, E. & Arcioni, S. RFLPs are an effective tool for the identification of creeping bentgrass (A. stolonifera L.) cultivars. Genetic Resources Crop Evolution. 47, 455–459 (2000).
Casler, M. D., Duncan, R. R., Stier, J. C. & Curley, J. Molecular marker and morphological analyses of creeping bentgrass cultivars. Crop Sci. 43, 307–312 (2003).
Vergara, G. V. & Bughrara, S. S. AFLP analyses of genetic diversity in bentgrass. Crop Sci. 43, 2162–2171 (2003).
Vergara, G. V. & Bughrara, S. S. Genetic differentiation of tetraploid creeping bentgrass and hexaploid redtop bentgrass genotypes by AFLP and their use in turfgrass breeding. Crop Sci. 44(3), 884–890 (2004).
Amundsen, K. L., Rotter, D., Jung, G., Belanger, F. & Warnke, S. E. Miniature inverted-repeat transposable element identification and genetic marker development in Agrostis. Crop Sci. 51(2), 854–861 (2011).
Amundsen, K. L. & Warnke, S. E. Species Relationships in the Genus Agrostis Based on Flow Cytometry and MITE-Display Molecular Markers. Crop Sci. 51(3), 1224–1231 (2011).
Kubik, C., Honig, J. & Bonos, S. A. Characterization of 215 simple sequence repeat markers in creeping bentgrass (Agrostis stolonifera L.). Molecular Ecology Resources. 11(5), 872–876 (2011).
Honig, J. A. et al. Classification of bentgrass (Agrostis) cultivars and accessions based on microsatellite (SSR) markers. Genet Resour Crop Evol. 63, 1139–1160 (2016).
Warnke, S. E. & Barnaby, J. Y. Genetic diversity of colonial bentgrass Agrostis capillaris based on simple sequence repeat markers and high-resolution melt analysis with haplotype scoring. Crop Sci. 63(3), 1628–1633 (2023).
Chakraborty, N., Bae, J., Warnke, S., Chang, T. & Jung, G. Linkage map construction in allotetraploid creeping bentgrass (Agrostis stolonifera L.). Theoretical and Applied Genetics 111, 795–803 (2005).
Chakraborty, N., Curley, J., Warnke, S., Casler, M. D. & Jung, G. Mapping QTL for dollar spot resistance in creeping bentgrass (Agrostis stolonifera L.). Theor. Appl. Genet. 113, 1421–1435 (2006).
Honig, J. A. et al. A PCR-based linkage map of Agrostis stolonifera and identification of QTL markers for dollar spot resistance. Mol Breeding. 34, 185–203 (2014).
Jespersen, D. et al. Association of SSR and candidate gene markers with genetic variations in summer heat and drought performance for creeping bentgrass. Crop Sci. 58(6), 2644–2656 (2018).
Arumuganathan, K. & Earle, E. D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).
Arumuganathan, K., Tallury, S. P., Fraser, M. L., Bruneau, A. H. & Qu, R. Nuclear DNA content of thirteen turfgrass species by flow cytometry. Crop Sci. 39(5), 1518–1521 (1999).
Bonos, S. A., Plumley, K. A. & Meyer, W. A. Ploidy determination in Agrostis using flow cytometry and morphological traits. Crop Sci. 42(1), 192–196 (2002).
Saski, C. et al. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. TAG Theor. Appl. Genet. Theor. Angew. Genet. 115, 571–590 (2007).
Li, J. et al. Complete mitochondrial genome of Agrostis stolonifera: insights into structure, Codon usage, repeats, and RNA editing. BMC Genomics 24, 466 (2023).
Araneda, L. et al. Comparative Genome Analysis between Agrostis stolonifera and Members of the Pooideae Subfamily, including Brachypodium distachyon. PLOS ONE. 8, e79425 (2013).
Byrne, S. L. et al. A synteny-based draft genome sequence of perennial ryegrass (Lolium perenne). Plant J. 84, 816–826 (2015).
Ma, Y., Shukla, V. & Merewitz, E. B. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLOS ONE 12, e0175848 (2017).
Xu, Y. & Huang, B. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Sci. Rep. 8, 15181 (2018).
Amundsen, K. et al. Colonial bentgrass transcript-expression differences compared with creeping bentgrass in response to water-deficit stress. Crop Sci. 61(3), 2135–2147 (2020).
Yuan, J. et al. Genome-wide analysis reveals four key transcription factors associated with cadmium stress in creeping bentgrass (Agrostis stolonifera L.). PeerJ. 6, e5191 (2018).
Jiang, H. Y. & He, J. Functional annotation of creeping bentgrass protein sequences based on convolutional neural network. BMC Plant Biol. 22, 227 (2022).
Wang, Z. Y. & Brummer, E. C. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? Ann. Bot. 110, 1317–1325 (2012).
Talukder, S. K. & Saha, M. C. Toward genomics-based breeding in cool-season perennial grasses. Front. Plant Sci. 8, 1316 (2017).
Robbins et al. Haplotype-resolved genome assembly of ‘Manhattan’ perennial ryegrass (Lolium perenne L.) and characterization of drought responsive late embryogenesis abundant genes. BMC Genomics. 26, 1125 (2025).
Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods. 21, 967–970 (2024).
Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).
Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 3, 99–101 (2016).
Dudchenko, O. et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv 254797 (2018).
Xu, M. et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. GigaScience 9, giaa094 (2020).
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
Chen, Y. et al. An improved chromosome-level genome assembly of perennial ryegrass (Lolium perenne L.). GigaByte. 2024, gigabyte112 (2024).
Cabanettes, F. & Klopp, C. D.-G. E. N. I. E. S. dot plot large genomes in an interactive, efficient and simple way. PeerJ. 6, e4958 (2018).
Jia, K. H., Wang, Z. X. & Wang, L. et. al. SubPhaser: A robust allopolyploid subgenome phasing method based on subgenome-specific k-mers [J]. New Phytologist. 235, 801–809 (2022).
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).
Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics. 38(10), 2922–2926 (2022).
Bushman, B. S. et al. Gene expression differences for drought stress response in three cool‐season turfgrasses. International Turfgrass Society Research Journal 14(1), 694–700 (2022).
Keilwagen, J., Hartung, F., & Grau, J. GeMoMa: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-seq Data. in Gene Prediction: Methods and Protocols (ed. Kollmar, M.) p. 161–177 (Springer, 2019).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).
Stiehler, F. et al. Helixer: cross-species gene annotation of large eukaryotic genomes using deep learning. Bioinformatics 36, 5291–5298 (2021).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).
Yan, H., Bombarely, A. & Li, S. DeepTE: a computational method for de novo classification of transposons with convolutional neural network. Bioinformatics 36, 4269–4275 (2020).
Tempel, S. Using and Understanding RepeatMasker. in Mobile Genetic Elements: Protocols and Genomic Applications (ed. Bigot, Y.) p. 29–51 (Humana Press, 2012).
Running Trinotate for annotating the transcripts: Bioinformatics Workbook https://bioinformaticsworkbook.org/dataAnalysis/RNA-Seq/annotating-transcripts.html.
Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods. 18, 366–368 (2021).
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP617872 (2025).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP618122 (2025).
NCBI Sequence Read Archive https://identifiers.org/insdc.gca:GCA_052724435.1 (2025).
NCBI Sequence Read Archive https://identifiers.org/insdc.gca:GCA_052724335.1 (2025).
Robbins, M., Park, S., Bushman, B. S., Warnke, S. E. & Barnaby, J. Y. Data from: Haplotype-resolved chromosome-level genome assembly of creeping bentgrass, Agrostis stolonifera. Ag Data Commons. Dataset. https://doi.org/10.15482/USDA.ADC/30081199.v2 (2025).
Acknowledgements
This research was partially funded by USDA Agricultural Research Service (ARS) base funds under projects 8020-21500-002-000D and 2080-21500-002-000D. This research used resources provided by the SCINet project of the USDA ARS project numbers 0201-88888-003-000D and 0201-88888-002-000D. Mention of a trade name, proprietary product, or vendor does not constitute an endorsement, guarantee, or warranty by the USDA and does not imply its approval to the exclusion of other products or vendors that may be suitable.
Author information
Authors and Affiliations
Contributions
M.D.R., S.P., B.S.B., S.E.W. and J.Y.B. configured and designed the project. M.D.R., and B.S.B. sequenced and performed genome assembly. S.P. performed genome structural and functional annotation. S.E.W. and J.Y.B. contributed to phenotyping, sample collections and plant maintenance. M.D.R., S.P. and J.Y.B. wrote the manuscript. M.D.R., S.P., B.S.B., S.E.W. and J.Y.B. revised the manuscript. All authors read and approved of the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Robbins, M.D., Park, S., Bushman, B.S. et al. Haplotype-resolved chromosome-level genome assembly of creeping bentgrass, Agrostis stolonifera. Sci Data (2026). https://doi.org/10.1038/s41597-026-06561-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-026-06561-4


