Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Haplotype-resolved chromosome-level genome assembly of creeping bentgrass, Agrostis stolonifera
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 16 January 2026

Haplotype-resolved chromosome-level genome assembly of creeping bentgrass, Agrostis stolonifera

  • Matthew D. Robbins  ORCID: orcid.org/0000-0002-5467-44521 na1,
  • Sunchung Park  ORCID: orcid.org/0000-0002-7398-94762 na1,
  • B. Shaun Bushman1,
  • Scott E. Warnke3 &
  • …
  • Jinyoung Y. Barnaby  ORCID: orcid.org/0000-0001-6507-99853 

Scientific Data , Article number:  (2026) Cite this article

  • 992 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Genome
  • Polyploidy in plants

Abstract

Creeping bentgrass (Agrostis stolonifera) is a widely used cool-season turfgrass valued for its fine texture and ability to form dense, uniform turfs. However, its complex allotetraploid genome and high repetitive content have posed challenges for genomic research and molecular breeding. Here, we report a haplotype-resolved chromosome-level genome assembly generated using PacBio HiFi and Oxford Nanopore sequencing with Omni-C scaffolding. The final assembly spans 5.4 Gb, with a scaffold N50 of 187.9 Mb and comprises 28 pseudochromosomes representing fully phased haplotypes (2n = 4x = 28). BUSCO analysis indicated 98.8% completeness, indicating the high quality of the assembly. We annotated 146,216 protein-coding genes and found that transposable elements account for 79.8% of the genome, dominated by LTR-Gypsy elements. Subgenome-specific LTR clustering and comparative genomic alignments supported an allopolyploid origin involving two diverged progenitors. This high-quality genome provides a foundational resource for functional genomics and breeding efforts to improve disease resistance, abiotic stress tolerance, and turf quality.

Similar content being viewed by others

Chromosome-level and haplotype-resolved genome assembly of Bougainvillea glabra

Article Open access 18 January 2025

Chromosome-scale genome assembly of Zoysia japonica uncovers cold tolerance candidate genes

Article Open access 03 April 2025

Chromosome-level Genome Assembly of the Halophytic Turfgrass Zoysia macrostachya

Article Open access 31 July 2025

Code availability

All data processing commands and pipelines were executed in accordance with the instructions and guidelines provided by the respective bioinformatic software. No custom scripts or code were used in this study.

References

  1. Beard, J. B. Turfgrass: science and culture. (Prentice-Hall, 1972).

  2. Cook, R. Oregon Seed Certification. (Oregon State Univ. Press, Corvallis, OR, 1996).

  3. Turgeon, A. J. Turfgrass species. In: Turfgrass management. p. 57–110 (Prentice Hall, Upper Saddle River, NJ, 2012).

  4. Warnke, S. Creeping bentgrass (Agrostis stolonifera L.). In: M. D. Casler, R. R. Duncan, editors, Turfgrass biology, genetics, and breeding. p. 175–185 (John Wiley & Sons, Hoboken, NJ, 2003).

  5. Xu, Q. & Huang, B. Growth and physiological responses of creeping bentgrass to heat stress. Crop Sci 40(5), 1363–1368 (2000).

    Google Scholar 

  6. Beard, J. B. & Kenna, M. P. Water quality and quantity issues for turfgrasses in urban landscapes (2008).

  7. Jones, K. Species determination in Agrostis. Part II. The significance of chromosome pairing in the tetraploid hybrids of Agrostis canina subsp. Montana Hartm., A. tenius Sibth., and A. stolonifera L. Journal of Genetics. 54, 377–393 (1956).

    Google Scholar 

  8. Luo, H. et al. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Reports 22, 645–652 (2004).

    Google Scholar 

  9. Yu, T. T. et al. Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas. 133(3), 229–33 (2000).

    Google Scholar 

  10. Xiao, L. & Ha, S. B. Efficient selection and regeneration of creeping bentgrass transformants following particle bombardment. Plant Cell Rep. 16(12), 874–878 (1997).

    Google Scholar 

  11. Yamamato, I. & Duich, J. M. Electrophoretic identification of cross-pollinated bentgrass species and cultivars. Crop Sci. 34(3), 792–798 (1994).

    Google Scholar 

  12. Golembiewski, R. C., Danneberger, T. K. & Sweeney, P. M. Potential of RAPD markers for use in the identification of creeping bentgrass cultivars. Crop Sci. 37(1), 212–214 (1997).

    Google Scholar 

  13. Warnke, S. E., Douches, D. S. & Branham, B. E. Relationships among creeping bentgrass cultivars based on isozyme polymorphisms. Crop Sci. 37(1), 203–207 (1997).

    Google Scholar 

  14. Warnke, S. E., Douches, D. S. & Branham, B. E. Isozyme analysis support allotetraploid inheritance in tetraploid creeping bentgrass (Agrostis palustris Huds.). Crop Sci. 38, 801–805 (1998).

    Google Scholar 

  15. Caceres, M. E., Pulpilli, F., Piano, E. & Arcioni, S. RFLPs are an effective tool for the identification of creeping bentgrass (A. stolonifera L.) cultivars. Genetic Resources Crop Evolution. 47, 455–459 (2000).

    Google Scholar 

  16. Casler, M. D., Duncan, R. R., Stier, J. C. & Curley, J. Molecular marker and morphological analyses of creeping bentgrass cultivars. Crop Sci. 43, 307–312 (2003).

    Google Scholar 

  17. Vergara, G. V. & Bughrara, S. S. AFLP analyses of genetic diversity in bentgrass. Crop Sci. 43, 2162–2171 (2003).

    Google Scholar 

  18. Vergara, G. V. & Bughrara, S. S. Genetic differentiation of tetraploid creeping bentgrass and hexaploid redtop bentgrass genotypes by AFLP and their use in turfgrass breeding. Crop Sci. 44(3), 884–890 (2004).

    Google Scholar 

  19. Amundsen, K. L., Rotter, D., Jung, G., Belanger, F. & Warnke, S. E. Miniature inverted-repeat transposable element identification and genetic marker development in Agrostis. Crop Sci. 51(2), 854–861 (2011).

    Google Scholar 

  20. Amundsen, K. L. & Warnke, S. E. Species Relationships in the Genus Agrostis Based on Flow Cytometry and MITE-Display Molecular Markers. Crop Sci. 51(3), 1224–1231 (2011).

    Google Scholar 

  21. Kubik, C., Honig, J. & Bonos, S. A. Characterization of 215 simple sequence repeat markers in creeping bentgrass (Agrostis stolonifera L.). Molecular Ecology Resources. 11(5), 872–876 (2011).

    Google Scholar 

  22. Honig, J. A. et al. Classification of bentgrass (Agrostis) cultivars and accessions based on microsatellite (SSR) markers. Genet Resour Crop Evol. 63, 1139–1160 (2016).

    Google Scholar 

  23. Warnke, S. E. & Barnaby, J. Y. Genetic diversity of colonial bentgrass Agrostis capillaris based on simple sequence repeat markers and high-resolution melt analysis with haplotype scoring. Crop Sci. 63(3), 1628–1633 (2023).

    Google Scholar 

  24. Chakraborty, N., Bae, J., Warnke, S., Chang, T. & Jung, G. Linkage map construction in allotetraploid creeping bentgrass (Agrostis stolonifera L.). Theoretical and Applied Genetics 111, 795–803 (2005).

    Google Scholar 

  25. Chakraborty, N., Curley, J., Warnke, S., Casler, M. D. & Jung, G. Mapping QTL for dollar spot resistance in creeping bentgrass (Agrostis stolonifera L.). Theor. Appl. Genet. 113, 1421–1435 (2006).

    Google Scholar 

  26. Honig, J. A. et al. A PCR-based linkage map of Agrostis stolonifera and identification of QTL markers for dollar spot resistance. Mol Breeding. 34, 185–203 (2014).

    Google Scholar 

  27. Jespersen, D. et al. Association of SSR and candidate gene markers with genetic variations in summer heat and drought performance for creeping bentgrass. Crop Sci. 58(6), 2644–2656 (2018).

    Google Scholar 

  28. Arumuganathan, K. & Earle, E. D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).

    Google Scholar 

  29. Arumuganathan, K., Tallury, S. P., Fraser, M. L., Bruneau, A. H. & Qu, R. Nuclear DNA content of thirteen turfgrass species by flow cytometry. Crop Sci. 39(5), 1518–1521 (1999).

    Google Scholar 

  30. Bonos, S. A., Plumley, K. A. & Meyer, W. A. Ploidy determination in Agrostis using flow cytometry and morphological traits. Crop Sci. 42(1), 192–196 (2002).

    Google Scholar 

  31. Saski, C. et al. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. TAG Theor. Appl. Genet. Theor. Angew. Genet. 115, 571–590 (2007).

    Google Scholar 

  32. Li, J. et al. Complete mitochondrial genome of Agrostis stolonifera: insights into structure, Codon usage, repeats, and RNA editing. BMC Genomics 24, 466 (2023).

    Google Scholar 

  33. Araneda, L. et al. Comparative Genome Analysis between Agrostis stolonifera and Members of the Pooideae Subfamily, including Brachypodium distachyon. PLOS ONE. 8, e79425 (2013).

    Google Scholar 

  34. Byrne, S. L. et al. A synteny-based draft genome sequence of perennial ryegrass (Lolium perenne). Plant J. 84, 816–826 (2015).

    Google Scholar 

  35. Ma, Y., Shukla, V. & Merewitz, E. B. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLOS ONE 12, e0175848 (2017).

    Google Scholar 

  36. Xu, Y. & Huang, B. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Sci. Rep. 8, 15181 (2018).

    Google Scholar 

  37. Amundsen, K. et al. Colonial bentgrass transcript-expression differences compared with creeping bentgrass in response to water-deficit stress. Crop Sci. 61(3), 2135–2147 (2020).

    Google Scholar 

  38. Yuan, J. et al. Genome-wide analysis reveals four key transcription factors associated with cadmium stress in creeping bentgrass (Agrostis stolonifera L.). PeerJ. 6, e5191 (2018).

    Google Scholar 

  39. Jiang, H. Y. & He, J. Functional annotation of creeping bentgrass protein sequences based on convolutional neural network. BMC Plant Biol. 22, 227 (2022).

    Google Scholar 

  40. Wang, Z. Y. & Brummer, E. C. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? Ann. Bot. 110, 1317–1325 (2012).

    Google Scholar 

  41. Talukder, S. K. & Saha, M. C. Toward genomics-based breeding in cool-season perennial grasses. Front. Plant Sci. 8, 1316 (2017).

    Google Scholar 

  42. Robbins et al. Haplotype-resolved genome assembly of ‘Manhattan’ perennial ryegrass (Lolium perenne L.) and characterization of drought responsive late embryogenesis abundant genes. BMC Genomics. 26, 1125 (2025).

  43. Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods. 21, 967–970 (2024).

    Google Scholar 

  44. Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).

    Google Scholar 

  45. Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 3, 99–101 (2016).

    Google Scholar 

  46. Dudchenko, O. et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv 254797 (2018).

  47. Xu, M. et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. GigaScience 9, giaa094 (2020).

    Google Scholar 

  48. Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

    Google Scholar 

  49. Chen, Y. et al. An improved chromosome-level genome assembly of perennial ryegrass (Lolium perenne L.). GigaByte. 2024, gigabyte112 (2024).

    Google Scholar 

  50. Cabanettes, F. & Klopp, C. D.-G. E. N. I. E. S. dot plot large genomes in an interactive, efficient and simple way. PeerJ. 6, e4958 (2018).

    Google Scholar 

  51. Jia, K. H., Wang, Z. X. & Wang, L. et. al. SubPhaser: A robust allopolyploid subgenome phasing method based on subgenome-specific k-mers [J]. New Phytologist. 235, 801–809 (2022).

    Google Scholar 

  52. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    Google Scholar 

  53. Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).

    Google Scholar 

  54. Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics. 38(10), 2922–2926 (2022).

    Google Scholar 

  55. Bushman, B. S. et al. Gene expression differences for drought stress response in three cool‐season turfgrasses. International Turfgrass Society Research Journal 14(1), 694–700 (2022).

    Google Scholar 

  56. Keilwagen, J., Hartung, F., & Grau, J. GeMoMa: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-seq Data. in Gene Prediction: Methods and Protocols (ed. Kollmar, M.) p. 161–177 (Springer, 2019).

  57. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  58. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Google Scholar 

  59. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Google Scholar 

  60. Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).

    Google Scholar 

  61. Stiehler, F. et al. Helixer: cross-species gene annotation of large eukaryotic genomes using deep learning. Bioinformatics 36, 5291–5298 (2021).

    Google Scholar 

  62. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    Google Scholar 

  63. Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    Google Scholar 

  64. Yan, H., Bombarely, A. & Li, S. DeepTE: a computational method for de novo classification of transposons with convolutional neural network. Bioinformatics 36, 4269–4275 (2020).

    Google Scholar 

  65. Tempel, S. Using and Understanding RepeatMasker. in Mobile Genetic Elements: Protocols and Genomic Applications (ed. Bigot, Y.) p. 29–51 (Humana Press, 2012).

  66. Running Trinotate for annotating the transcripts: Bioinformatics Workbook https://bioinformaticsworkbook.org/dataAnalysis/RNA-Seq/annotating-transcripts.html.

  67. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods. 18, 366–368 (2021).

    Google Scholar 

  68. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    Google Scholar 

  69. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP617872 (2025).

  70. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP618122 (2025).

  71. NCBI Sequence Read Archive https://identifiers.org/insdc.gca:GCA_052724435.1 (2025).

  72. NCBI Sequence Read Archive https://identifiers.org/insdc.gca:GCA_052724335.1 (2025).

  73. Robbins, M., Park, S., Bushman, B. S., Warnke, S. E. & Barnaby, J. Y. Data from: Haplotype-resolved chromosome-level genome assembly of creeping bentgrass, Agrostis stolonifera. Ag Data Commons. Dataset. https://doi.org/10.15482/USDA.ADC/30081199.v2 (2025).

    Google Scholar 

Download references

Acknowledgements

This research was partially funded by USDA Agricultural Research Service (ARS) base funds under projects 8020-21500-002-000D and 2080-21500-002-000D. This research used resources provided by the SCINet project of the USDA ARS project numbers 0201-88888-003-000D and 0201-88888-002-000D. Mention of a trade name, proprietary product, or vendor does not constitute an endorsement, guarantee, or warranty by the USDA and does not imply its approval to the exclusion of other products or vendors that may be suitable.

Author information

Author notes
  1. These authors contributed equally: Matthew D. Robbins, Sunchung Park.

Authors and Affiliations

  1. United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Unit, Logan, UT, 84322, USA

    Matthew D. Robbins & B. Shaun Bushman

  2. United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Sustainable Perennial Crops Laboratory, Beltsville, MD, 20705, USA

    Sunchung Park

  3. United States Department of Agriculture, Agricultural Research Service, United States National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD, 20705, USA

    Scott E. Warnke & Jinyoung Y. Barnaby

Authors
  1. Matthew D. Robbins
    View author publications

    Search author on:PubMed Google Scholar

  2. Sunchung Park
    View author publications

    Search author on:PubMed Google Scholar

  3. B. Shaun Bushman
    View author publications

    Search author on:PubMed Google Scholar

  4. Scott E. Warnke
    View author publications

    Search author on:PubMed Google Scholar

  5. Jinyoung Y. Barnaby
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.D.R., S.P., B.S.B., S.E.W. and J.Y.B. configured and designed the project. M.D.R., and B.S.B. sequenced and performed genome assembly. S.P. performed genome structural and functional annotation. S.E.W. and J.Y.B. contributed to phenotyping, sample collections and plant maintenance. M.D.R., S.P. and J.Y.B. wrote the manuscript. M.D.R., S.P., B.S.B., S.E.W. and J.Y.B. revised the manuscript. All authors read and approved of the final manuscript.

Corresponding author

Correspondence to Jinyoung Y. Barnaby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robbins, M.D., Park, S., Bushman, B.S. et al. Haplotype-resolved chromosome-level genome assembly of creeping bentgrass, Agrostis stolonifera. Sci Data (2026). https://doi.org/10.1038/s41597-026-06561-4

Download citation

  • Received: 22 September 2025

  • Accepted: 29 December 2025

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41597-026-06561-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing