Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Critical classification parameters linking species to Plant Functional Type in African ecosystems
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 03 February 2026

Critical classification parameters linking species to Plant Functional Type in African ecosystems

  • Enimhien F. Akhabue  ORCID: orcid.org/0000-0002-7879-22501,2,
  • Andrew M. Cunliffe  ORCID: orcid.org/0000-0002-8346-42781,2,
  • Karina Bett-Williams  ORCID: orcid.org/0000-0002-1185-535X2,3,
  • Anna B. Harper  ORCID: orcid.org/0000-0001-7294-60394,
  • Petra Holden  ORCID: orcid.org/0000-0002-3047-14075 &
  • …
  • Tom Powell  ORCID: orcid.org/0000-0002-5240-03512 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecological modelling
  • Plant ecology

Abstract

Accurately representing African ecosystems in land surface models (LSMs) remains challenging due to the limited availability and accessibility of ecological data like plant traits. We systematically classified African plant species represented in the TRY plant trait database into Plant Functional Types (PFTs) consistent with those in the JULES LSM, to enable improvements of PFT parameterization in these models. From the TRY database plant trait observations were obtained representing 2,082 plant species. We assigned classification parameters including growth form, leaf type, leaf phenology, photosynthetic pathway and climate zone using multiple sources. This delivered a sixfold increase in number of plant species that could be mapped to PFT classes from 265 to 1603 representing 137 families. It delivered a fivefold increase in the number of useable observations among the 27 traits evaluated. Our lookup table can be used to integrate existing plant trait data into PFT parameterisations in land surface models and similar large scale modelling exercises, to enhance the representation of African ecosystems and improve their capacity to simulate African ecosystems.

Data availability

All data and companion materials are deposited on Zenodo at https://doi.org/10.5281/zenodo.16533069. The archive contains the PFT classification lookup table and supporting files, packaged as a versioned archive and licensed under CC0 1.0. The main lookup table is provided as Mapped_PFT_Harmonized.csv, which contains the finalized PFT classification. This table is intended for direct reuse as a lookup resource when assigning plant species to PFTs in ecological analyses and land-surface modelling workflows. A detailed description of every file and field is provided in README.md and DATA_column_descriptions.csv within the archive. These documents define variable names, codes, and dataset structure to facilitate reproducibility.

Code availability

The full codebase for the analysis and resulting outputs are available at https://doi.org/10.5281/zenodo.16533069 under CC0 1.0 license.

References

  1. Achieng, A. O. et al. Monitoring biodiversity loss in rapidly changing Afrotropical ecosystems: an emerging imperative for governance and research. Phil. Trans. R. Soc. B 378, 20220271 (2023).

    Google Scholar 

  2. Siddig, A. A. H. Why is biodiversity data-deficiency an ongoing conservation dilemma in Africa? Journal for Nature Conservation 50, 125719 (2019).

    Google Scholar 

  3. Cornwell, W. K., Pearse, W. D., Dalrymple, R. L. & Zanne, A. E. What we (don’t) know about global plant diversity. Ecography 42, 1819–1831 (2019).

    Google Scholar 

  4. Perez, T. M. et al. Botanic gardens are an untapped resource for studying the functional ecology of tropical plants. Phil. Trans. R. Soc. B 374, 20170390 (2019).

    Google Scholar 

  5. Cranko Page, J., Abramowitz, G., De Kauwe, M. G. & Pitman, A. J. Are Plant Functional Types Fit for Purpose? Geophysical Research Letters 51, e2023GL104962 (2024).

    Google Scholar 

  6. Harper, K. L. et al. A 29-year time series of annual 300-metre resolution plant functional type maps for climate models. Earth Syst. Sci. Data 15, 1465-1499 (2023).

  7. Ustin, S. L. & Gamon, J. A. Remote sensing of plant functional types. New Phytologist 186, 795–816 (2010).

    Google Scholar 

  8. Fisher, R. A. et al. Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology 24, 35–54 (2018).

    Google Scholar 

  9. Fisher, R. A. & Koven, C. D. Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. J. Adv. Model. Earth Syst. 12 (2020).

  10. Harper, A. B. et al. Improved representation of plant functional types and physiology in theJoint UK Land Environment Simulator (JULES v4.2) using plant traitinformation. Geosci. Model Dev. 9, 2415–2440 (2016).

    Google Scholar 

  11. Wang, L., Arora, V. K., Bartlett, P., Chan, E. & Curasi, S. R. Mapping of ESA’s Climate Change Initiative land cover data to plant functional types for use in the CLASSIC land model. Biogeosciences 20, 2265–2282 (2023).

    Google Scholar 

  12. Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sensing of Environment 203, 71–89 (2017).

    Google Scholar 

  13. Baker, E., Harper, A. B., Williamson, D. & Challenor, P. Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES. Geosci. Model Dev. 15, 1913–1929 (2022).

    Google Scholar 

  14. Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat Ecol Evol 2, 1906–1917 (2018).

    Google Scholar 

  15. Bello, F. D. et al. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36, 393–402 (2013).

    Google Scholar 

  16. Stark, J., Lehman, R., Crawford, L., Enquist, B. J. & Blonder, B. Does environmental heterogeneity drive functional trait variation? A test in montane and alpine meadows. Oikos 126, 1650–1659 (2017).

    Google Scholar 

  17. Wan, J. et al. Spatial environmental heterogeneity may drive functional trait variation in Hydrocotyle vulgaris (Araliaceae), an invasive aquatic plant. Aquat. Biol. 28, 149–158 (2019).

    Google Scholar 

  18. Zhao, L., Chen, H., Chen, B., Wang, Y. & Sun, H. Drought Shapes Photosynthetic Production Traits and Water Use Traits along with Their Relationships with Leaves of Typical Desert Shrubs in Qaidam. Forests 13, 1652 (2022).

    Google Scholar 

  19. Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters 19, 992–1006 (2016).

    Google Scholar 

  20. Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119–188 (2020).

    Google Scholar 

  21. Friedlingstein, P. et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Google Scholar 

  22. Sitch, S. et al. Trends and Drivers of Terrestrial Sources and Sinks of Carbon Dioxide: An Overview of the TRENDY Project. Global Biogeochemical Cycles 38, e2024GB008102 (2024).

    Google Scholar 

  23. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  24. Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).

    Google Scholar 

  25. Harper, A. B. et al. Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geosci. Model Dev. 11, 2857–2873 (2018).

    Google Scholar 

  26. Martín Belda, D. et al. LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism. Geosci. Model Dev. 15, 6709–6745 (2022).

    Google Scholar 

  27. Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system. Global Biogeochemical Cycles 19, 2003GB002199 (2005).

    Google Scholar 

  28. Lawrence, D. M. et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J Adv Model Earth Syst 11, 4245–4287 (2019).

    Google Scholar 

  29. Clements, H. S. et al. The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses. Sci Data 11, 191 (2024).

    Google Scholar 

  30. Lam, O. H. Y. et al. ‘rtry’: An R package to support plant trait data preprocessing. Ecology and Evolution 14, e11292 (2024).

    Google Scholar 

  31. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2021).

  32. Kindt, R. WorldFlora: An R package for exact and fuzzy matching of plant names against the World Flora Online taxonomic backbone data. Appl Plant Sci 8, e11388 (2020).

    Google Scholar 

  33. World Flora Online. World Flora Online (2025).

  34. Gaillard, C. et al. African shrub distribution emerges via a trade-off between height and sapwood conductivity. Journal of Biogeography 45, 2815–2826 (2018).

    Google Scholar 

  35. Zizka, A., Govender, N. & Higgins, S. I. How to tell a shrub from a tree: A life-history perspective from a South African savanna. Austral Ecology 39, 767–778 (2014).

    Google Scholar 

  36. Körner, C. Treelines Will be Understood Once the Functional Difference Between a Tree and a Shrub Is. AMBIO 41, 197–206 (2012).

    Google Scholar 

  37. Ghimire, B. et al. A global trait-based approach to estimate leaf nitrogen functional allocation from observations. Ecological Applications 27, 1421–1434 (2017).

    Google Scholar 

  38. Muir, C. D., Hangarter, R. P., Moyle, L. C. & Davis, P. A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (S olanum sect. L ycopersicon, sect. L ycopersicoides; S olanaceae). Plant Cell & Environment 37, 1415–1426 (2014).

    Google Scholar 

  39. Zhang, Y. et al. Characterization of the microRNA408-LACCASE5 module as a regulatory axis for photosynthetic efficiency in Medicago ruthenica: implications for forage yield enhancement. Front. Genet. 14, 1295222 (2023).

    Google Scholar 

  40. Caldararu, S., Purves, D. W. & Palmer, P. I. Phenology as a strategy for carbon optimality: a global model. Biogeosciences 11, 763–778 (2014).

    Google Scholar 

  41. Givnish, T. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn. 36 (2002).

  42. Forseth, I. N. The Ecology of Photosynthetic Pathways. Nature Education Knowledge 3, 4 (2010).

    Google Scholar 

  43. Henry, R. J., Furtado, A. & Rangan, P. Pathways of Photosynthesis in Non-Leaf Tissues. Biology 9, 438 (2020).

    Google Scholar 

  44. Kattge, J. et al. and the TRY Consortium. TRY – Categorical Traits Dataset. Data from: TRY – a global database of plant traits. TRY File Archive https://www.try-db.org/TryWeb/Data.php#3, https://doi.org/10.17871/TRY.3 (2012).

  45. Akhabue, E. et al. TESS-Laboratory/Akhabue_PFT_Classification: V1.3. Zenodo https://doi.org/10.5281/zenodo.17861027 (2025).

  46. Agyare, C., Obiri, D. D., Boakye, Y. D. & Osafo, N. Anti-Inflammatory and Analgesic Activities of African Medicinal Plants. in Medicinal Plant Research in Africa 725–752, https://doi.org/10.1016/B978-0-12-405927-6.00019-9 (Elsevier, 2013).

  47. Archer, R. H. & Van Wyk, A. E. A taxonomic revision of Robsonodendron, a new genus in the Cassinoideae (Celastraceae). South African Journal of Botany 63, 116–122 (1997).

    Google Scholar 

  48. Bruhl, J. & Wilson, K. Towards a Comprehensive Survey of C3 and C4 Photosynthetic Pathways in Cyperaceae. aliso 23, 99–148 (2007).

    Google Scholar 

  49. Christin, P.-A., Samaritani, E., Petitpierre, B., Salamin, N. & Besnard, G. Evolutionary Insights on C4 Photosynthetic Subtypes in Grasses from Genomics and Phylogenetics. Genome Biology and Evolution 1, 221–230 (2009).

    Google Scholar 

  50. Edwards, E. J. & Still, C. J. Climate, phylogeny and the ecological distribution of C4 grasses. Ecology Letters 11, 266–276 (2008).

    Google Scholar 

  51. Ghasemkhani, M., Akhani, H., Sahebi, J. & Scholz, H. The genera Aristida and Stipagrostis (Poaceae) in Iran. Willdenowia 38, 135 (2008).

    Google Scholar 

  52. Hu, H., Mauro-Herrera, M. & Doust, A. N. Domestication and Improvement in the Model C4 Grass, Setaria. Front. Plant Sci. 9, 719 (2018).

    Google Scholar 

  53. Jennifer, N. et al. Bioactive Compounds from the Plants of the Elaeodendron Genus and Their Biological Activities—A Review. Applied Sciences 12, 12618 (2022).

    Google Scholar 

  54. Kaur, A., Batish, D. R., Kaur, S. & Chauhan, B. S. An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. Front. Plant Sci. 12, 690806 (2021).

    Google Scholar 

  55. Lebrun, J.-P. & Stork, A. L. Tropical African Flowering Plants. 2: Euphorbiaceae - Dichapetalaceae. (Ville de Genéve, Éd. des Conservatoire et Jardin Botaniques, Genève, 2006).

  56. Michael, J. J. & Catherine, A. S. Defoliation Effects on Basal Cover and Productivity in Perennial Grasslands of Ethiopia. Plant Ecology 169, 245–257 (2003).

    Google Scholar 

  57. Neto, M. A. M. & Guerra, M. P. A new method for determination of the photosynthetic pathway in grasses. Photosynth Res 142, 51–56 (2019).

    Google Scholar 

  58. Osborne, C. P. et al. A global database of C 4 photosynthesis in grasses. New Phytologist 204, 441–446 (2014).

    Google Scholar 

  59. Oyelade, O. J., Odugbenro, P. O., Abioye, A. O. & Raji, N. L. Some physical properties of African star apple (Chrysophyllum alibidum) seeds. Journal of Food Engineering 67, 435–440 (2005).

    Google Scholar 

  60. Ps, R. & Raju, A. J. S. Suvarna Raju P1, Solomon Raju AJ2 (2022).

  61. Ramos, G., Ampofo, E. K., Mensah, A. Y., Sarpong, F. M. & Kingsley, I. Anti-inflammatory and anti-oxidant activity of Dialium dinklagei Harms. (Leguminosae). World J Pharm Sci 5, 6–12 (2017).

    Google Scholar 

  62. Ruffo, C. K., Birnie, A. & Tengnas, B. Edible Wild Plants of Tanzania. (Regional Land Management Unit; Nairobi., 2002).

  63. Snow, N., Peterson, P. M. & Romaschenko, K. Systematics of Disakisperma (Poaceae, Chloridoideae, Chlorideae). PHYTOKEYS 26, 21–70 (2013).

    Google Scholar 

  64. Taylor, S. H. et al. Ecophysiological traits in C 3 and C 4 grasses: a phylogenetically controlled screening experiment. New Phytologist 185, 780–791 (2010).

    Google Scholar 

  65. Thomas, A. D. et al. The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO 2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degrad Dev 29, 1306–1316 (2018).

    Google Scholar 

  66. Wooller, M. J., Swain, D. L., Street-Perrott, F. A., Mathai, S. & Agnew, A. D. Q. An Altitudinal And Stable Carbon Isotope Survey of C3 and C4 Graminoids On Mount Kenya. J East Afr Nat Hist 90, 69 (2001).

    Google Scholar 

  67. Young, H. J. & Young, T. P. Local distribution of C3 and C4 grasses in sites of overlap on Mount Kenya. Oecologia 58, 373–377 (1983).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Oppenheimer Programme in African Landscape Systems (OPALS), jointly funded by the University of Exeter, Sarah Turvill, and Oppenheimer Generations Research and Conservation. We thank the TRY database and all contributing data providers.

Author information

Authors and Affiliations

  1. Department of Geography, University of Exeter, Exeter, United Kingdom

    Enimhien F. Akhabue & Andrew M. Cunliffe

  2. Global Systems Institute, University of Exeter, Exeter, United Kingdom

    Enimhien F. Akhabue, Andrew M. Cunliffe, Karina Bett-Williams & Tom Powell

  3. UK Meteorological Office, Exeter, United Kingdom

    Karina Bett-Williams

  4. University of Georgia, Athens, Georgia, United States of America

    Anna B. Harper

  5. African Climate & Development Initiative, University of Cape Town, Cape Town, South Africa

    Petra Holden

Authors
  1. Enimhien F. Akhabue
    View author publications

    Search author on:PubMed Google Scholar

  2. Andrew M. Cunliffe
    View author publications

    Search author on:PubMed Google Scholar

  3. Karina Bett-Williams
    View author publications

    Search author on:PubMed Google Scholar

  4. Anna B. Harper
    View author publications

    Search author on:PubMed Google Scholar

  5. Petra Holden
    View author publications

    Search author on:PubMed Google Scholar

  6. Tom Powell
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualisation and Methodology development (E.F.A. and A.M.C.), Data curation, analysis, visualization, and Writing – original draft (E.F.A.), Manuscript review & editing (All authors), Funding (A.M.C. and T.P.), Supervision (A.M.C., K.W., P.H., A.H., and T.P.). All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Enimhien F. Akhabue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhabue, E.F., Cunliffe, A.M., Bett-Williams, K. et al. Critical classification parameters linking species to Plant Functional Type in African ecosystems. Sci Data (2026). https://doi.org/10.1038/s41597-026-06728-z

Download citation

  • Received: 18 August 2025

  • Accepted: 26 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06728-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing