Abstract
Paracondylactis sinensis is a burrowing sea anemone inhabiting soft sediments along the Chinese coast, representing an ecologically and economically important actiniarian species. Despite its unique adaptations to hypoxia and sediment-associated stressors, genomic resources for burrowing sea anemones have been lacking. Here, we report a high-quality, chromosome-level genome assembly of P. sinensis. With PacBio HiFi long reads (39.77 × coverage), Illumina short reads, and Hi-C data, a 210.63 Mb genome with a contig N50 of 8.70 Mb and a scaffold N50 of 9.41 Mb was generated. A total of 93.44% of the assembly was anchored to 19 pseudo-chromosomes. BUSCO analysis indicated 95.91% completeness, confirming high assembly quality. Comprehensive annotation identified 19,420 protein-coding genes, of which 91.35% were functionally annotated. Repetitive elements accounted for 26.43% of the genome, with transposable elements representing 20.47%. This genome provides a crucial reference for understanding the genetic basis of environmental adaptation in P. sinensis and supports future efforts in its conservation, aquaculture, and bioactive compound exploration.
Similar content being viewed by others
Data availability
The raw sequencing data are available in the NCBI Sequence Read Archive (SRA) database (https://identifiers.org/ncbi/insdc.sra:SRP627585), the genome assembly is available in NCBI GenBank (https://identifiers.org/ncbi/insdc.gca:GCA_054491775.1), and the genome and annotation files are available via Figshare (https://doi.org/10.6084/m9.figshare.30209509.v1).
Code availability
Genome survey:
(1) Trimmomatic: parameter: ILLUMINACLIP:TruSeq. 3-PE-2.fa:2:30:10 LEADING:15 TRAILING:15 SLIDINGWINDOW:4:15 MINLEN:40.
(2) FastUniq: parameter: -t q -c 1.
(3) Jellyfish:
count: parameter: -G 2 -m 17 -C.
histo: all parameters were set as default.
stats: all parameters were set as default.
(4) GenomeScope: parameter: -p 2 -k 17 -m 10000.
Contamination screen:
(1) FCS-GX: parameter: --tax-id 1 --div None --split-fasta true --action-report true.
Genome assembly:
(1) Hifiasm: parameter: -l 3.
(2) Chromap: parameter: --preset hic --remove-pcr-duplicates.
(3) Yahs: all parameters were set as default.
(4) Juicer: all parameters were set as default.
(5) Samtools: all parameters were set as default.
Genome annotation:
(1) RepeatModeler: parameter: BuildDatabase -name, -LTRStruct.
(2) RepeatMasker: parameter: -e rmblast -gff -s -a -nolow.
(3) Hisat2: all parameters were set as default.
(4) Trinity: parameter: --genome_guided_bam --genome_guided_max_intron 20000.
(5) BRAKER3: all parameters were set as default.
(6) PASA: parameter:
Launch_PASA_pipeline.pl -C -R --ALIGNERS minimap2.
Launch_PASA_pipeline.pl –A.
(7) AGAT: all parameters were set as default.
Completeness evaluation
(1) BUSCO (for genome assembly): parameter: -m genome -l metazoa_odb10.
(2) BUSCO (for translated protein sequence): parameter: -m prot -l metazoa_odb10.
(3) CEGMA: all parameters were set as default.
(4) Merqury: parameter: meryl count k = 21.
Read mapping:
(1) BWA:
short reads: all parameters were set as default.
PacBio HiFi reads: parameter: -x pacbio.
(2) Picard: all parameters were set as default.
(3) Samtools: all parameters were set as default.
References
Mangum, D. C. Burrowing behavior of the sea anemone Phyllactis. Biol. Bull. 138, 316–325 (1970).
Ivanova, N. Y. Classification and evolution of the burrowing sea anemones (Anthozoa: Actiniaria: Athenaria): a review of the past and current views. Zoosyst. Rossica 29, 213–237 (2020).
Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).
Sassaman, C. & Mangum, C. P. Adaptations to environmental oxygen levels in infaunal and epifaunal sea anemones. Biol. Bull. 143, 657–678 (1972).
Li, J. et al. The complete mitochondrial genome of an economic sea anemone (Paracondylactis sinensis) in the East China Sea. Mitochondrial DNA Part B. Resources 8, 977–980 (2023).
Li, J. et al. Development of microsatellite markers and evaluation of the genetic diversity of the edible sea anemone Paracondylactis sinensis (Cnidaria, Anthozoa) in China. Biodivers. Data J. 12, e134363 (2024).
Ramírez-Carreto, S., Miranda-Zaragoza, B., Simões, N., González-Muñoz, R. & Rodríguez-Almazán, C. Marine Bioprospecting: enzymes and stress proteins from the sea anemones Anthopleura dowii and Lebrunia neglecta. Mar. Drugs 22, 12 (2024).
Mizuno, M., Ito, Y. & Morgan, B. P. Exploiting the nephrotoxic effects of venom from the sea anemone, Phyllodiscus semoni, to create a hemolytic uremic syndrome model in the rat. Mar. Drugs 10, 1582–1604 (2012).
Grafskaia, E. N. et al. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus. J. Bioinf. Comput. Biol. 16, 1840006 (2018).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Xu, H. et al. FastUniq: A fast de novo duplicates removal tool for paired short reads. PLOS ONE 7, e52249 (2012).
Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics, 14 (2017).
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
Astashyn, A. et al. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biology 25, 60 (2024).
NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_932526225 (2022).
Zhang, H., Song, L. & Wang, X. Fast alignment and preprocessing of chromatin profiles with Chromap. Nat. Commun. 12, 6566 (2021).
Li, H. et al. The sequence alignment/map format and sAMtools. Bioinformatics 25, 2078–2079 (2009).
Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA. 117, 9451–9457 (2020).
Chen, N. Using Repeatmasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. 5, 4.10.11–14.10.14 (2004).
Shum, C. W. et al. Genome of the sea anemone Exaiptasia pallida and transcriptome profiles during tentacle regeneration. Front. Cell Dev. Biol. 10, 900321 (2022).
Li, J. et al. Chromosome-level genome assembly of a deep-sea Venus flytrap sea anemone sheds light upon adaptations to an extremely oligotrophic environment. Mol. Ecol. 33, e17504 (2024).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).
Liu, C. et al. Whole genome sequencing of a novel sea anemone (Actinostola sp.) from a deep-sea hydrothermal vent. Sci. Data 11, 102 (2024).
Zhou, Y. et al. Genetic adaptations of sea anemone to hydrothermal environment. Sci. Adv. 9, eadh0474 (2023).
Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).
Surm, J. M., Stewart, Z. K. & Papanicolaou, A. The draft genome of Actinia tenebrosa reveals insights into toxin evolution. Ecol. Evol. 9, 11314–11328 (2019).
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic. Acids Res. 31, 5654–5666 (2003).
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Dainat, J. et al. AGAT: Another GFF analysis toolkit to handle annotations in any GTF, GFF format. Zenodo (2020).
NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_023349425 (2022).
Li, J. Y. Annotation files of five sea anemones (Actinoscyphia liui, Diadumene lineata, Anthopleura sola, Telmatactis stephensoni and Actinia tenebrosa). figshare https://doi.org/10.6084/m9.figshare.25966645.v4 (2025).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP627585 (2026).
NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_054491775.1 (2026).
Li, J. Y. The genome and annotation file of sea anemone Paracondylactis sinensis. figshare https://doi.org/10.6084/m9.figshare.30209509.v1 (2026).
Simão, F., Waterhouse, R. M., Panagiotis, I., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 3210–3212 (2015).
Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).
Rhie, A. et al. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Acknowledgements
This work was supported by Shandong Provincial Natural Science Foundation (No. ZR2025MS656), the Taizhou Science and Technology Plan Project (No. 25nyb03), and National Natural Science Foundation of China (No. 32570619). Thanks are given to the Oceanographic Data Center, IOCAS, for providing computing power.
Author information
Authors and Affiliations
Contributions
Junyuan Li: Conceptualization, Data curation, Formal analysis, Methodology, Software, Validation, Visualization and Writing. Rongye Tang: Conceptualization, Investigation, Project administration, Resources, Supervision, and Validation. Juan Feng: Investigation, Resources and Validation. Tinghui Xie: Resources and Validation. Sitong Liu: Software. Yang Li: Conceptualization, Validation,Funding acquisition, Project administration, Resources, Supervision,Writing -review& editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Li, J., Tang, R., Feng, J. et al. Chromosome-scale genome of the burrowing sea anemone Paracondylactis sinensis. Sci Data (2026). https://doi.org/10.1038/s41597-026-06838-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-026-06838-8


