Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Chromosome-scale genome of the burrowing sea anemone Paracondylactis sinensis
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 14 February 2026

Chromosome-scale genome of the burrowing sea anemone Paracondylactis sinensis

  • Junyuan Li1,
  • Rongye Tang2,
  • Juan Feng1,
  • Tinghui Xie1,
  • Sitong Liu1 &
  • …
  • Yang Li2 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Comparative genomics
  • Conservation genomics

Abstract

Paracondylactis sinensis is a burrowing sea anemone inhabiting soft sediments along the Chinese coast, representing an ecologically and economically important actiniarian species. Despite its unique adaptations to hypoxia and sediment-associated stressors, genomic resources for burrowing sea anemones have been lacking. Here, we report a high-quality, chromosome-level genome assembly of P. sinensis. With PacBio HiFi long reads (39.77 × coverage), Illumina short reads, and Hi-C data, a 210.63 Mb genome with a contig N50 of 8.70 Mb and a scaffold N50 of 9.41 Mb was generated. A total of 93.44% of the assembly was anchored to 19 pseudo-chromosomes. BUSCO analysis indicated 95.91% completeness, confirming high assembly quality. Comprehensive annotation identified 19,420 protein-coding genes, of which 91.35% were functionally annotated. Repetitive elements accounted for 26.43% of the genome, with transposable elements representing 20.47%. This genome provides a crucial reference for understanding the genetic basis of environmental adaptation in P. sinensis and supports future efforts in its conservation, aquaculture, and bioactive compound exploration.

Similar content being viewed by others

Chromosome-level genome assembly and annotation of a sea toad (Chaunax sp.)

Article Open access 19 December 2024

Chromosome-level assembly of Triplophysa yarkandensis genome based on the single molecule real-time sequencing

Article Open access 05 January 2024

A chromosome-level genome assembly of Coryphaenoides armatus

Article Open access 03 February 2026

Data availability

The raw sequencing data are available in the NCBI Sequence Read Archive (SRA) database (https://identifiers.org/ncbi/insdc.sra:SRP627585), the genome assembly is available in NCBI GenBank (https://identifiers.org/ncbi/insdc.gca:GCA_054491775.1), and the genome and annotation files are available via Figshare (https://doi.org/10.6084/m9.figshare.30209509.v1).

Code availability

Genome survey:

(1) Trimmomatic: parameter: ILLUMINACLIP:TruSeq. 3-PE-2.fa:2:30:10 LEADING:15 TRAILING:15 SLIDINGWINDOW:4:15 MINLEN:40.

(2) FastUniq: parameter: -t q -c 1.

(3) Jellyfish:

count: parameter: -G 2 -m 17 -C.

histo: all parameters were set as default.

stats: all parameters were set as default.

(4) GenomeScope: parameter: -p 2 -k 17 -m 10000.

Contamination screen:

(1) FCS-GX: parameter: --tax-id 1 --div None --split-fasta true --action-report true.

Genome assembly:

(1) Hifiasm: parameter: -l 3.

(2) Chromap: parameter: --preset hic --remove-pcr-duplicates.

(3) Yahs: all parameters were set as default.

(4) Juicer: all parameters were set as default.

(5) Samtools: all parameters were set as default.

Genome annotation:

(1) RepeatModeler: parameter: BuildDatabase -name, -LTRStruct.

(2) RepeatMasker: parameter: -e rmblast -gff -s -a -nolow.

(3) Hisat2: all parameters were set as default.

(4) Trinity: parameter: --genome_guided_bam --genome_guided_max_intron 20000.

(5) BRAKER3: all parameters were set as default.

(6) PASA: parameter:

Launch_PASA_pipeline.pl -C -R --ALIGNERS minimap2.

Launch_PASA_pipeline.pl –A.

(7) AGAT: all parameters were set as default.

Completeness evaluation

(1) BUSCO (for genome assembly): parameter: -m genome -l metazoa_odb10.

(2) BUSCO (for translated protein sequence): parameter: -m prot -l metazoa_odb10.

(3) CEGMA: all parameters were set as default.

(4) Merqury: parameter: meryl count k = 21.

Read mapping:

(1) BWA:

short reads: all parameters were set as default.

PacBio HiFi reads: parameter: -x pacbio.

(2) Picard: all parameters were set as default.

(3) Samtools: all parameters were set as default.

References

  1. Mangum, D. C. Burrowing behavior of the sea anemone Phyllactis. Biol. Bull. 138, 316–325 (1970).

    Google Scholar 

  2. Ivanova, N. Y. Classification and evolution of the burrowing sea anemones (Anthozoa: Actiniaria: Athenaria): a review of the past and current views. Zoosyst. Rossica 29, 213–237 (2020).

    Google Scholar 

  3. Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).

    Google Scholar 

  4. Sassaman, C. & Mangum, C. P. Adaptations to environmental oxygen levels in infaunal and epifaunal sea anemones. Biol. Bull. 143, 657–678 (1972).

    Google Scholar 

  5. Li, J. et al. The complete mitochondrial genome of an economic sea anemone (Paracondylactis sinensis) in the East China Sea. Mitochondrial DNA Part B. Resources 8, 977–980 (2023).

    Google Scholar 

  6. Li, J. et al. Development of microsatellite markers and evaluation of the genetic diversity of the edible sea anemone Paracondylactis sinensis (Cnidaria, Anthozoa) in China. Biodivers. Data J. 12, e134363 (2024).

    Google Scholar 

  7. Ramírez-Carreto, S., Miranda-Zaragoza, B., Simões, N., González-Muñoz, R. & Rodríguez-Almazán, C. Marine Bioprospecting: enzymes and stress proteins from the sea anemones Anthopleura dowii and Lebrunia neglecta. Mar. Drugs 22, 12 (2024).

    Google Scholar 

  8. Mizuno, M., Ito, Y. & Morgan, B. P. Exploiting the nephrotoxic effects of venom from the sea anemone, Phyllodiscus semoni, to create a hemolytic uremic syndrome model in the rat. Mar. Drugs 10, 1582–1604 (2012).

    Google Scholar 

  9. Grafskaia, E. N. et al. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus. J. Bioinf. Comput. Biol. 16, 1840006 (2018).

    Google Scholar 

  10. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  11. Xu, H. et al. FastUniq: A fast de novo duplicates removal tool for paired short reads. PLOS ONE 7, e52249 (2012).

    Google Scholar 

  12. Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics, 14 (2017).

  13. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Google Scholar 

  14. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Google Scholar 

  15. Astashyn, A. et al. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biology 25, 60 (2024).

    Google Scholar 

  16. NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_932526225 (2022).

  17. Zhang, H., Song, L. & Wang, X. Fast alignment and preprocessing of chromatin profiles with Chromap. Nat. Commun. 12, 6566 (2021).

    Google Scholar 

  18. Li, H. et al. The sequence alignment/map format and sAMtools. Bioinformatics 25, 2078–2079 (2009).

    Google Scholar 

  19. Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).

    Google Scholar 

  20. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Google Scholar 

  21. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA. 117, 9451–9457 (2020).

    Google Scholar 

  22. Chen, N. Using Repeatmasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. 5, 4.10.11–14.10.14 (2004).

    Google Scholar 

  23. Shum, C. W. et al. Genome of the sea anemone Exaiptasia pallida and transcriptome profiles during tentacle regeneration. Front. Cell Dev. Biol. 10, 900321 (2022).

    Google Scholar 

  24. Li, J. et al. Chromosome-level genome assembly of a deep-sea Venus flytrap sea anemone sheds light upon adaptations to an extremely oligotrophic environment. Mol. Ecol. 33, e17504 (2024).

    Google Scholar 

  25. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Google Scholar 

  26. Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).

    Google Scholar 

  27. Liu, C. et al. Whole genome sequencing of a novel sea anemone (Actinostola sp.) from a deep-sea hydrothermal vent. Sci. Data 11, 102 (2024).

    Google Scholar 

  28. Zhou, Y. et al. Genetic adaptations of sea anemone to hydrothermal environment. Sci. Adv. 9, eadh0474 (2023).

    Google Scholar 

  29. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Google Scholar 

  30. Surm, J. M., Stewart, Z. K. & Papanicolaou, A. The draft genome of Actinia tenebrosa reveals insights into toxin evolution. Ecol. Evol. 9, 11314–11328 (2019).

    Google Scholar 

  31. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic. Acids Res. 31, 5654–5666 (2003).

    Google Scholar 

  32. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    Google Scholar 

  33. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Google Scholar 

  34. Dainat, J. et al. AGAT: Another GFF analysis toolkit to handle annotations in any GTF, GFF format. Zenodo (2020).

  35. NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_023349425 (2022).

  36. Li, J. Y. Annotation files of five sea anemones (Actinoscyphia liui, Diadumene lineata, Anthopleura sola, Telmatactis stephensoni and Actinia tenebrosa). figshare https://doi.org/10.6084/m9.figshare.25966645.v4 (2025).

  37. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP627585 (2026).

  38. NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_054491775.1 (2026).

  39. Li, J. Y. The genome and annotation file of sea anemone Paracondylactis sinensis. figshare https://doi.org/10.6084/m9.figshare.30209509.v1 (2026).

  40. Simão, F., Waterhouse, R. M., Panagiotis, I., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 3210–3212 (2015).

  41. Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

    Google Scholar 

  42. Rhie, A. et al. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Google Scholar 

  43. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation (No. ZR2025MS656), the Taizhou Science and Technology Plan Project (No. 25nyb03), and National Natural Science Foundation of China (No. 32570619). Thanks are given to the Oceanographic Data Center, IOCAS, for providing computing power.

Author information

Authors and Affiliations

  1. College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, 318020, China

    Junyuan Li, Juan Feng, Tinghui Xie & Sitong Liu

  2. Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China

    Rongye Tang & Yang Li

Authors
  1. Junyuan Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Rongye Tang
    View author publications

    Search author on:PubMed Google Scholar

  3. Juan Feng
    View author publications

    Search author on:PubMed Google Scholar

  4. Tinghui Xie
    View author publications

    Search author on:PubMed Google Scholar

  5. Sitong Liu
    View author publications

    Search author on:PubMed Google Scholar

  6. Yang Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Junyuan Li: Conceptualization, Data curation, Formal analysis, Methodology, Software, Validation, Visualization and Writing. Rongye Tang: Conceptualization, Investigation, Project administration, Resources, Supervision, and Validation. Juan Feng: Investigation, Resources and Validation. Tinghui Xie: Resources and Validation. Sitong Liu: Software. Yang Li: Conceptualization, Validation,Funding acquisition, Project administration, Resources, Supervision,Writing -review& editing.

Corresponding author

Correspondence to Yang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tang, R., Feng, J. et al. Chromosome-scale genome of the burrowing sea anemone Paracondylactis sinensis. Sci Data (2026). https://doi.org/10.1038/s41597-026-06838-8

Download citation

  • Received: 08 October 2025

  • Accepted: 05 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06838-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing