Table 1 Parameters of the spiraling elliptic Hermite-Gaussian beam for different orders of n.

From: Spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy

 

P 0

σ ≡ M 0/P 0

n = 0

πA 2 bc

(b 2 − c 2)Θ/2

n = 1

2πA 2 bc(b 2 + c 2)

[2 + 3(b 2 − c 2)Θ]/2

n = 2

4πA 2 bc[3(b 4 + c 4) − 2b 2 c 2 − 2(b 2 − c 2)]

C1(b, c) + C2(b, c*

  1. *\({C}_{1}(b,c)=\frac{\mathrm{23(}{b}^{4}+{c}^{4})+2{b}^{2}{c}^{2}-{b}^{2}+{c}^{2}}{\mathrm{3(}{b}^{4}+{c}^{4})+2{b}^{2}{c}^{2}-\mathrm{2(}{b}^{2}-{c}^{2})+1},\)
  2. \({C}_{2}(b,c)=\frac{15{b}^{6}+3{b}^{4}({c}^{2}-2)+{b}^{2}(1+4{c}^{2}-3{c}^{4})-{c}^{2}(1+6{c}^{2}+15{c}^{4})}{\mathrm{6(}{b}^{4}+{c}^{4})+4{b}^{2}{c}^{2}-\mathrm{4(}{b}^{2}-{c}^{2})+2}\).