Table 5 Performance of the prediction model by survival hazard ratio decision tree using different model setting.

From: A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study

Setting

Imputation method

Use One

Weight method

Validation method

Validation ratio

N folds

Train set size

Test set size

Parameters

Training Performance

Test Performance

1

MICE/CART

F

nothing

Cross-validation

 

5

2796

932

cp = 0.01/maxdepth = 6

0.73

0.71

1

MICE/CART

T

nothing

Cross-validation

 

5

2796

932

cp = 0.01/maxdepth = 6

0.71

0.68

1

MICE/CART

T

nothing

One validation

0.285

 

2796

932

cp = −1/maxdepth = 2

0.72

0.67

1

MICE/CART

F

nothing

One validation

0.285

 

2796

932

cp = 0.004/maxdepth = 14

0.92

0.59

2

nothing

F

nothing

One validation

0.285

 

930

310

cp = 0.028/maxdepth = 4

0.78

0.80

2

MICE/CART

F

nothing

Cross-validation

 

5

2796

932

cp = 0.008/maxdepth = 4

0.74

0.69

2

MICE/CART

F

nothing

One validation

0.285

 

2796

932

cp = 0.01/maxdepth = 6

0.77

0.68

2

MICE/CART

T

nothing

Cross-validation

 

5

2796

932

cp = 0.008/maxdepth = 6

0.71

0.68

2

MICE/CART

T

nothing

One validation

0.285

 

2796

932

cp = −1/maxdepth = 2

0.72

0.67

2

nothing

F

nothing

Cross-validation

 

5

930

310

cp = −1/maxdepth = 12

0.94

0.62

2

nothing

T

nothing

Cross-validation

 

5

930

310

cp = 0.002/maxdepth = 12

0.94

0.61

2

nothing

T

nothing

One validation

0.285

 

930

310

cp = 0.02/maxdepth = 8

0.91

0.60

3

MICE/CART

F

nothing

Cross-validation

 

5

2796

932

cp = 0.012/maxdepth = 4

0.72

0.68

3

MICE/CART

T

nothing

Cross-validation

 

5

2796

932

cp = 0.014/maxdepth = 4

0.70

0.65

3

MICE/CART

F

nothing

One validation

0.285

 

2796

932

cp = 0.01/maxdepth = 6

0.74

0.61

3

MICE/CART

T

nothing

One validation

0.285

 

2796

932

cp = 0.014/maxdepth = 4

0.72

0.58

  1. *Test performance were presented as concordance index for time to graft failure data. Model setting 1: Use overall attributes with multiple imputation. Model setting 2: Use attributes except DSA, with/without imputation. Model setting 3: Use attributes except 3 month follow up data, with imputation. Test ratio fix 0.3. Use One False (F) is used if the follow-up period is shorter than the period to be predicted in the classification; these cases were excluded from the training process. Use One True (T) is used as a positive example if the patient has experienced a graft failure even though the follow-up period is short. Weight method by Zupan et al. is used when the follow-up period is short, with both positive and negative examples used, but with different weights6.