Table 1 Hydrodynamic and dimensional data for HD-PTP.

From: The open architecture of HD-PTP phosphatase provides new insights into the mechanism of regulation of ESCRT function

Experimental

MALS

AUC

SAXS

R h (nm)

Mr (Da) exp./calc.

R h (nm)

f/f 0

S 20,W

R g (nm)

D max (nm)

P

V (A 3)

HD-PTPCC (no tag)

3.93 ± 0.12

38,200/38,987

4.07

1.76

2.47 ± 0.19

4.53

15.3

2.8

67,664

HD-PTPBro1-CC (+tag)

4.97 ± 0.12

85,900/83,459

5.04

1.74

3.86 ± 0.10

5.55

19.3

3.3

123,506

HD-PTPBro1-CC-PRR (+tag)

5.47 ± 0.05

87,900/86,107

5.52

1.88

3.63 ± 0.13

5.83

20.4

3.3

126,320

Calculated (SOMO)

Coordinates

R h (nm)

f/f 0

S 20,W

R g (nm)

D max (nm)

  

HD-PTPCC

5LM2

3.62

1.61

2.60

4.47

16.3

  

HD-PTPCC

model

3.66

1.63

2.50

4.37

16.1

  

HD-PTPBro1-CC

model

5.26

1.81

3.71

6.10

22.0

  

HD-PTPBro1-CC-PRR

model

5.51

1.88

3.64

6.39

25.0

  

AlixV

4JJY

3.61

1.61

2.52

3.88

13.2

  

AlixV

2OJQ

3.22

1.44

2.83

2.91

11.2

  

AlixBro1-V

2OEV

4.32

1.52

4.16

4.49

16.5

  
  1. Experimental parameters were determined from MALS, AUC and SAXS measurements. Hydrodynamic parameters for the crystal structures of HD-PTPCC 29, AlixV 47 and AlixBro1-V 32 and the best SAXS models of HD-PTPCC, HD-PTPBro1-CC and HD-PTPBro1-CC-PRR were calculated with SOMO45. R h hydrodynamic radius; S 20,w sedimentation coefficient in water at 20 °C; f/f 0 frictional coefficient; R g radius of gyration; D max , maximal linear dimension of the particles; P, Porod exponent; V, Porod volume.