Table 1 Fitting of creep compliance J(t) with different rheological models.

From: Unexpected viscoelastic deformation of tight sandstone: Insights and predictions from the fractional Maxwell model

Model

J(t)

Parameters

R 2

Fractional Maxwell model

\(\frac{1}{{E}_{{\rm{H}}}}+\frac{1}{{\eta }_{{\rm{A}}}^{\alpha }}\frac{{t}^{\alpha }}{{\rm{\Gamma }}(1+\alpha )}\)

E H = 4.426 GPa

0.99

\({\eta }_{{\rm{A}}}^{\alpha }=219.562\,{\rm{GPa}}\cdot {s}^{\alpha }\)

α = 0.268

Maxwell model

\(\frac{1}{{E}_{{\rm{H}}}}+\frac{t}{{\eta }_{{\rm{N}}}}\)

\({E}_{{\rm{H}}}=3.944\,{\rm{GPa}}\)

0.99

\({\eta }_{{\rm{N}}}=2.375\times {10}^{5}\,{\rm{GPa}}\cdot {\rm{s}}\)

Three-parameter generalized Kelvin model

\(\frac{1}{{E}_{{\rm{H}}}}+\frac{1}{{E}_{{\rm{K}}}}[1-\exp (-\frac{{E}_{{\rm{K}}}}{{\eta }_{{\rm{K}}}}t)]\)

\({E}_{{\rm{H}}}=4.078\,{\rm{GPa}}\)

0.99

\({E}_{{\rm{K}}}=27.741\,{\rm{GPa}}\)

\({\eta }_{{\rm{K}}}=7.481\times {10}^{4}\,{\rm{GPa}}\cdot {\rm{s}}\)

Burgers model

\(\frac{1}{{E}_{{\rm{H}}}}+\frac{t}{{\eta }_{{\rm{N}}}}+\frac{1}{{E}_{{\rm{K}}}}[1-\exp (-\frac{{E}_{{\rm{K}}}}{{\eta }_{{\rm{K}}}}t)]\)

\({E}_{{\rm{H}}}=4.135\,{\rm{GPa}}\)

0.99

\({E}_{{\rm{K}}}=49.254\,{\rm{GPa}}\)

\({\eta }_{{\rm{N}}}=3.896\times {10}^{5}\,{\rm{GPa}}\cdot {\rm{s}}\)

\({\eta }_{{\rm{K}}}=4.667\times {10}^{4}\,{\rm{GPa}}\cdot {\rm{s}}\)