Table 3 Mean Square Error (MSE) and Mean Absolute Error (MAE) between actual and predicted responses using 3 fold cross validation of integrated Random Forest, separate RF model for each cancer and Heterogeneity Aware Random Forest (HARF) for different cancer types in the CCLE dataset.

From: Heterogeneity Aware Random Forest for Drug Sensitivity Prediction

Drug Name

Cancer Types

Number of Samples

Mean AUC of Cancer Types

Random Forest

Cancer Specific RF

HARF

MSE

MAE

MSE

MAE

MSE

MAE

AZD6244

Skin & CNS

40 & 29

0.304 & 0.090

0.0168

0.1061

0.0163

0.0957

0.0140

0.0861

AZD6244

Skin & Ovary

40 & 28

0.304 & 0.114

0.0168

0.1083

0.0162

0.0982

0.0145

0.0918

Lapatinib

Breast & CNS

29 & 29

0.148 & 0.030

0.0083

0.0703

0.0094

0.0709

0.0073

0.0590

Nilotinib

CNS & HLT

29 & 71

0.039 & 0.168

0.0245

0.1065

0.0241

0.1024

0.0225

0.0986

Nilotinib

Ovary & HLT

28 & 71

0.046 & 0.168

0.0247

0.1082

0.0223

0.0968

0.0230

0.1002

PD-0325901

CNS & Skin

29 & 40

0.130 & 0.434

0.0325

0.1507

0.0275

0.1316

0.0269

0.1311

PD-0325901

Pancreas & Breast

30 & 30

0.343 & 0.136

0.0230

0.1210

0.0166

0.0994

0.0137

0.0918

  1. Number of trees, number of features in each node for branching and the minimum leaves used in the models are 100, 10 and 4 respectively.