Table 3 Results justifying the optimal window size (in days) of nine window sizes as determined by the proposed approach applied to four longitudinal networks.

From: The optimal window size for analysing longitudinal networks

UCI Network

Validation tests

Window Size (days)

1

2

3

4

5

6

7

15

30

1. Best Fit ARIMA

(0,1,1)

(0,1,1)

(0,1,1)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

2. Time Series Anomaly (%)

0

0

0

0

0

0

0

3.15

3.57

3. k-means clustering

         

3.1 Optimal number of clusters

8

8

8

8

9

8

7

8

8

3.2 Minimum Total Within-cluster Variance

0.084

0.127

0.155

0.151

0.121

0.163

0.226

0.170

0.150

MIT Network

  

1. Best Fit ARIMA

(1,0,0)

(2,0,2)

(0,1,1)

(0,1,1)

(0,1,1)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

2. Time Series Anomaly (%)

0.85

0.85

1.28

0

0

0

0

0

0

3. k-means clustering

         

3.1 Optimal number of clusters

1

1

1

2

1

2

2

2

2

3.2 Minimum Total Within-cluster Variance

0.969

1.092

1.119

0.284

1.082

0.256

0.255

0.252

0.225

Email Network

  

1. Best Fit ARIMA

(1,0,0)

(1,1,1)

(2,1,3)

(1,1,1)

(0,1,1)

(0,1,1)

(0,1,1)

(0,1,0)

(0,1,0)

2. Time Series Anomaly (%)

4.62

4.51

4.40

4.41

3.64

4.35

2.56

0

0

3. k-means clustering

         

3.1 Optimal number of clusters

6

4

4

4

3

3

3

3

3

3.2 Minimum Total Within-cluster Variance

0.059

0.196

0.236

0.222

0.400

0.357

0.344

0.260

0.214

Facebook Network

  

1. Best Fit ARIMA

(3,1,3)

(0,1,1)

(4,1,4)

(2,1,2)

(0,1,1)

(2,1,2)

(4,1,0)

(0,1,0)

(0,1,0)

2. Time Series Anomaly (%)

0

0.87

0.85

0.56

0.68

0.83

0.96

0.96

4.00

3. k-means clustering

         

3.1 Optimal number of clusters

8

8

9

9

9

9

9

8

9

3.2 Minimum Total Within-cluster Variance

0.026

0.081

0.115

0.172

0.232

0.301

0.363

1.032

1.442

  1. The evaluations involved three types of validation tests: the best-fit ARIMA model, the percentage of time series anomalies in time series of the positional dynamicity of SINs of nine different lengths and the total within-cluster variance or total within-cluster sum of squares of the optimal number of clusters determined from k-means clustering on a distribution of actor positional dynamicity values.