Table 3 The parameters f and e keep \({\hat{P}}_{{\bf{0}},{\boldsymbol{f}}}\), \({\hat{P}}_{{\boldsymbol{e}},{\bf{0}}}\). In Eqs (38) and (39), constant coefficients \({\sum }_{\bar{{\boldsymbol{x}}},{\boldsymbol{f}}}{(-1)}^{\bar{{\boldsymbol{x}}}\cdot {\boldsymbol{f}}}\) equal to 0 as the cancellation coefficient leading some \({\hat{P}}_{{\bf{0}},{\boldsymbol{f}}}\), \({\hat{P}}_{{\boldsymbol{e}},{\bf{0}}}\) cancelled. Take \({\boldsymbol{f}}\mathrm{=11100000}\) and \(01100000\) for example which are belong and not belong to TableĀ 3. \({\sum }_{\bar{{\boldsymbol{x}}}}{(-1)}^{\bar{{\boldsymbol{x}}}\cdot \mathrm{(11100000)}}={2}^{4}\) and \({\sum }_{\bar{{\boldsymbol{x}}}}{(-\mathrm{1)}}^{\bar{{\boldsymbol{x}}}\cdot \mathrm{(01100000)}}=0\).
From: The solvability of quantum k-pair network in a measurement-based way
\({\boldsymbol{e}}\) | \({\boldsymbol{f}}\) | |||
|---|---|---|---|---|
00000000 | 00100000 | 01000000 | 01100000 | 00000000 |
10000000 | 10100000 | 11000000 | 11100000 | 00000111 |
00000100 | 00100100 | 01000100 | 01100100 | 11100000 |
10000100 | 10100100 | 11000100 | 11100100 | 11100111 |