Table 1 Summary of statistics for three different cases of burst in gene expression.
From: Efficient and flexible implementation of Langevin simulation for gene burst production
|  | mRNA burst (y = m) | both bursts (y = p) | protein burst (y = p) |
|---|---|---|---|
condition | γ g  ≥ 10 γ m | γ g  ≥ 10 γ m  ≥ 100 γ p | γ m  ≥ 10 γ p |
simulated subjects | m(t), p(t) | p(t) | g(t), p(t) |
burst event distribution: | |||
\({\bar{e}}_{y}(\tau )\) | k g τ | \({k}_{g}\tau {\bar{b}}_{m}\) ‡ | g(t)k m τ |
\({\sigma }_{ey}^{2}(\tau )\) | k g τ | \({k}_{g}\tau {\bar{b}}_{m}(2{\bar{b}}_{m}+1)\) ‡ | g(t)k m τ |
burst size†distribution: | |||
\({\bar{b}}_{y}\) | \({\bar{b}}_{m}\) | \({\bar{b}}_{p}\) | \({\bar{b}}_{p}\) |
\({\sigma }_{by}^{2}\) | \({\bar{b}}_{m}^{2}+{\bar{b}}_{m}\) | \({\bar{b}}_{p}^{2}+{\bar{b}}_{p}\) | \({\bar{b}}_{p}^{2}+{\bar{b}}_{p}\) |
burst production in Langevin equation: | |||
\({{\rm{\Delta }}}_{y}(\tau )\) by equation (10) | \({k}_{g}\tau {\bar{b}}_{m}\)‡ | \({k}_{g}\tau {\bar{b}}_{m}{\bar{b}}_{p}\) | \(g(t){k}_{m}\tau {\bar{b}}_{p}\) |
\({\sigma }_{{{\rm{\Delta }}}_{y}}^{2}(\tau )\) by equation (11) | \({k}_{g}\tau {\bar{b}}_{m}(2{\bar{b}}_{m}+1)\)‡ | \({k}_{g}\tau {\bar{b}}_{m}{\bar{b}}_{p}(2{\bar{b}}_{m}{\bar{b}}_{p}+2{\bar{b}}_{p}+1)\) | \(g(t){k}_{m}\tau {\bar{b}}_{p}(2{\bar{b}}_{p}+1)\) |
steady-state distribution: exact expression* | |||
\(\bar{m}\,=\) \(\bar{g}\frac{{k}_{m}}{{\gamma }_{m}}\) | same as exact | — | — |
\({\sigma }_{m,ss}^{2}\,=\) \(\bar{m}({F}_{1}{\bar{b}}_{m}+1)\) | \(\bar{m}({\bar{b}}_{m}+1)\) § | — | — |
\(\bar{p}\,=\) \(\bar{m}\frac{{k}_{p}}{{\gamma }_{p}}\) | same as exact | same as exact | same as exact |
\({\sigma }_{p,ss}^{2}\,=\) \(\bar{p}({F}_{0}{\bar{b}}_{m}{\bar{b}}_{p0}+{\bar{b}}_{p0}+1)\) | \(\bar{p}({\bar{b}}_{m}{\bar{b}}_{p0}+{\bar{b}}_{p0}+1)\) ¶ | \(\bar{p}({\bar{b}}_{m}{\bar{b}}_{p}+{\bar{b}}_{p}+1)\) || | \(\bar{p}({F}_{2}{\bar{b}}_{m}{\bar{b}}_{p}+{\bar{b}}_{p}+1)\) # |