Table 1 Comparison of the energies of the confined states obtained by the method presented in the supplementary material and the energies of the Fano resonances found in the transmission spectra of BGSBs.

From: Fano resonances in bilayer graphene superlattices

 

\({\boldsymbol{\eta }}{\boldsymbol{=}}\frac{{\bf{3}}}{{\bf{50}}}\)

\({\boldsymbol{\eta }}{\boldsymbol{=}}\frac{{\bf{6}}}{{\bf{50}}}\)

\({\boldsymbol{\eta }}{\boldsymbol{=}}\frac{{\bf{10}}}{{\bf{50}}}\)

\({\boldsymbol{\eta }}{\boldsymbol{=}}\frac{{\bf{20}}}{{\bf{50}}}\)

\({\boldsymbol{\eta }}{\boldsymbol{=}}\frac{{\bf{3}}}{{\bf{100}}}\)

\({\boldsymbol{\eta }}{\boldsymbol{=}}\frac{{\bf{6}}}{{\bf{100}}}\)

\({\boldsymbol{\eta }}{\boldsymbol{=}}\frac{{\bf{10}}}{{\bf{100}}}\)

\({\boldsymbol{\eta }}{\boldsymbol{=}}\frac{{\bf{20}}}{{\bf{100}}}\)

E b1

0.52

7

26

46

4

37

78

98

E FR

4

14

24

38

16

41

63

85

  1. We have defined the ratio between the barrier width and barrier height η = dB/V 0 as a parameter to characterize the barrier. The energies are given in meV and the barrier width in nm.