Table 6 The table reports the accuracies obtained from five different machine learning classifiers in the 10-fold cross-validation and in test set, using only normalized measures as predictors. In addition to accuracies, the table reports the weight average of True Positive Rate (TP Rate), False Positive Rate (FP Rate), Precision value, Recall value, F-Measure, Receiver Operating Characteristics (ROC) Area value and Precision-Recall Curve (PRC) Area value.

From: Covert lie detection using keyboard dynamics

Classifier

Accuracy

TP Rate

FP Rate

Precision

Recall

F-Measure

ROC Area

PRC Area

10-fold cross-validation

Logistic

90%

0.900

0.100

0.900

0.900

0.900

0.946

0.912

SVM (SMO)

92.5%

0.925

0.075

0.935

0.925

0.925

0.925

0.897

LMT

90%

0.900

0.100

0.917

0.900

0.899

0.985

0.986

Random Forest

95%

0.950

0.050

0.950

0.950

0.950

0.966

0.961

Test

Logistic

100%

1.000

0.000

1.000

1.000

1.000

1.000

1.000

SVM (SMO)

90%

0.900

0.100

0.917

0.900

0.899

0.900

0.867

LMT

90%

0.900

0.100

0.917

0.900

0.899

1.000

1.000

Random Forest

100%

1.000

0.000

1.000

1.000

1.000

1.000

1.000