Table 1 Notations used in the models and optimization formulation.
From: Multiple Kernel Learning Model for Relating Structural and Functional Connectivity in the Brain
Object | Description |
|---|---|
n | Number of ROIs or the number of nodes in the brain graph. |
p | Number of training subjects. |
SC | Structural connectivity matrix. |
SCs | SC matrix for subject s. |
Ds | Degree matrix for subject s; sum of edge weights for every region. |
FC | Functional connectivity matrix. |
FCs | FC matrix for subject s. |
| Â | \([{f}_{1}^{s},\cdots ,{f}_{n}^{s}]\) |
W n×n | Weighted adjacency matrix of a graph. |
D n×n | Degree matrix of a graph, computed by taking the sum of all weights on every node and diagonalizing the vector. |
\({{\bf{L}}}_{n\times n}^{s}\) | Laplacian matrix of subject s. |
\({{\rm{\Psi }}}_{n\times n}^{s}\) | Eigenvector matrix of the graph Laplacian of subject s. |
\({{\rm{\Lambda }}}_{n\times n}^{s}\) | Eigenvalue matrix, diagonal matrix with increasing order of eigenvalues, of the graph Laplacian of subject s. |
γ i | A scale at which diffusion kernel is defined. |
\({{\bf{H}}}_{i\,n\times n}^{s}\) | Diffusion kernel at scale γ i for subject s. |
m | Number of scales |
\({{\bf{H}}}_{n\times mn}^{s}\) | Collection of all m diffusion kernels of a subject s. \([\begin{array}{ccc}{{\bf{H}}}_{1\,n\times n}^{s} & \cdots & {{\bf{H}}}_{m\,n\times n}^{s}\end{array}]\) |
πin×n | Interregional co-activations corresponding to scale γ i . |
Πmn×n | Interregional co-activations collectively represented at all scales. \([\begin{array}{c}{\pi }_{1n\times n}\\ \vdots \\ {\pi }_{mn\times n}\end{array}]=[\begin{array}{ccc}{{{\rm{\Pi }}}^{1}}_{mn\times 1} & \cdots & {{{\rm{\Pi }}}^{n}}_{mn\times 1}\end{array}]\) |
X pn×mn | \([\begin{array}{c}{{\bf{H}}}^{1}\\ \vdots \\ {{\bf{H}}}^{p}\end{array}]\) |
Y pn×n | \([\begin{array}{c}{{{\rm{FC}}}^{1}}_{n\times n}\\ \vdots \\ {{{\rm{FC}}}^{p}}_{n\times n}\end{array}]=[\begin{array}{ccc}{f}_{1}^{1} & \cdots & {f}_{n}^{1}\\ & \vdots & \\ {f}_{1}^{p} & \cdots & {f}_{n}^{p}\end{array}]=[\begin{array}{ccc}{Y}_{1pn\times 1} & \cdots & {Y}_{npn\times 1}\end{array}]\) |
\({{\bf{C}}}_{f}^{s}\) | Predicted FC \({\sum }_{i=1}^{m}{{\bf{H}}}_{i}^{s}{\pi }_{i}\) |
\({{\bf{C}}}_{f}{|}_{{k}_{0}}\) | Functional connectivity FC when reaction only happens at k0Ï„. |