Table 2 Coordinates of Weyl points W1, \({{\bf{k}}}_{{W}_{1}}\), and W2, \({{\bf{k}}}_{{W}_{2}}\), in k space together with their energy distance \({\varepsilon }_{{F}_{i}}\) to the Fermi level and resulting free carrier densities n i .

From: Validity of Weyl fermion picture for transition metals monopnictides TaAs, TaP, NbAs, and NbP from ab initio studies

Weyl node

compound

k x \((\tfrac{{\bf{2}}{\boldsymbol{\pi }}}{{\boldsymbol{a}}})\)

k y \((\tfrac{{\bf{2}}{\boldsymbol{\pi }}}{{\boldsymbol{a}}})\)

k z \((\tfrac{{\bf{2}}{\boldsymbol{\pi }}}{{\boldsymbol{c}}})\)

\({{\boldsymbol{\varepsilon }}}_{{{\boldsymbol{F}}}_{{\boldsymbol{i}}}}\) (eV)

n i (1017 cm−3)

W 1

TaAs

0.0078

0.5103

0

−0.026

1.07 (4.38)

TaP

0.0077

0.5174

0

−0.055

15.00 (42.50)

NbAs

0.0026

0.4859

0

−0.033

3.93 (31.21)

NbP

0.0029

0.4921

0

−0.056

12.50 (380.75)

W 2

TaAs

0.0198

0.2818

0.5905

−0.013

0.25 (0.05)

TaP

0.0161

0.2741

0.5885

0.021

5.87 (0.26)

NbAs

0.0064

0.2790

0.5736

0.004

0.53 (0.01)

NbP

0.0047

0.2710

0.5770

0.026

3.78 (1.04)

  1. The densities computed for purely linear bands (see eq. (4)) with the Fermi velocities of Table 3 are given in parenthesis.