Table 10 Performance of model-based and model-free methods (using all features).
Method | acc | sens | spec | ppv | npv | lor | auc |
|---|---|---|---|---|---|---|---|
Logistic Regression | 0.439 | 0.400 | 0.456 | 0.243 | 0.635 | −0.581 | 0.630 |
Random Forests | 0.764 | 0.356 | 0.942 | 0.727 | 0.770 | 2.188 | 0.727 |
AdaBoost | 0.703 | 0.333 | 0.864 | 0.517 | 0.748 | 1.156 | 0.695 |
XGBoost | 0.730 | 0.333 | 0.903 | 0.600 | 0.756 | 1.537 | 0.710 |
SVM | 0.743 | 0.200 | 0.981 | 0.818 | 0.737 | 2.536 | 0.750 |
Neural Network | 0.655 | 0.444 | 0.748 | 0.435 | 0.755 | 0.863 | |
Super Learner | 0.723 | 0.289 | 0.913 | 0.591 | 0.746 | 1.445 |