Table 12 Performance of model-based and model-free methods (using all features).
Method | acc | sens | spec | ppv | npv | lor | auc |
|---|---|---|---|---|---|---|---|
Logistic Regression | 0.505 | 0.390 | 0.581 | 0.381 | 0.590 | −0.121 | 0.603 |
Random Forests | 0.689 | 0.537 | 0.790 | 0.629 | 0.721 | 1.473 | 0.702 |
AdaBoost | 0.718 | 0.610 | 0.790 | 0.658 | 0.754 | 1.773 | 0.719 |
XGBoost | 0.670 | 0.610 | 0.710 | 0.581 | 0.733 | 1.340 | 0.711 |
SVM | 0.757 | 0.512 | 0.919 | 0.808 | 0.740 | 2.482 | 0.767 |
Neural Network | 0.680 | 0.659 | 0.694 | 0.587 | 0.754 | 1.474 | |
Super Learner | 0.670 | 0.512 | 0.774 | 0.600 | 0.706 | 1.281 |