Table 19 Performance of model-based and model-free methods (using selected features) for Tel-Aviv dataset to predict no fall or at least two falls, contrast to results in Table 11 (falls/no-fall).
Method | acc | sens | spec | ppv | npv | lor | auc |
|---|---|---|---|---|---|---|---|
Random Forests | 0.811 | 0.714 | 0.855 | 0.690 | 0.869 | 2.689 | 0.880 |
AdaBoost | 0.822 | 0.750 | 0.855 | 0.700 | 0.883 | 2.872 | 0.886 |
XGBoost | 0.811 | 0.643 | 0.887 | 0.720 | 0.846 | 2.649 | 0.885 |
SVM | 0.833 | 0.714 | 0.887 | 0.741 | 0.873 | 2.978 | 0.881 |
Neural Network | 0.722 | 0.607 | 0.774 | 0.548 | 0.814 | 1.667 | |
Super Learner | 0.800 | 0.643 | 0.871 | 0.692 | 0.844 | 2.497 |