Table 2 Hierarchical Multiple Regression for CMSA-Motor and ARAT.

From: Variability in stroke motor outcome is explained by structural and functional integrity of the motor system

 

R2

Adjusted R2

p-value

β

p-value

ΔR2

p-value

Chedoke-McMaster Stroke Assessment Impairment Inventory Total Motor Impairment (CMSA-Motor)

Interaction Model

0.55

0.49

0.001

  

—

—

    CST Injury

   

−0.48

0.004

  

    LM1-RM1 rs-connectivity

   

0.60

0.001

  

    Interaction

   

0.05

0.75

  

Additive Model

0.55

0.51

<0.001

  

−0.002#

0.75

    CST Injury

   

−0.48

0.003

  

    LM1-RM1 rs-connectivity

   

0.58

<0.001

  

Simple Regression 1

0.21

0.18

0.02

  

−0.34^

<0.001

    CST Injury

   

−0.46

0.02

  

Simple Regression 2

0.32

0.29

0.003

  

−0.23^

0.003

    LM1-RM1 rs-connectivity

   

0.57

0.003

  

Action Research Arm Test (ARAT)

Interaction Model

0.44

0.36

0.006

  

—

—

    CST Injury

   

−0.48

0.008

  

    LM1-RM1 rs-connectivity

   

0.48

0.01

  

    Interaction

   

0.04

0.81

  

Additive Model

0.44

0.39

0.002

  

−0.002#

0.81

    CST Injury

   

−0.49

0.006

  

    LM1-RM1 rs-connectivity

   

0.47

0.008

  

Simple Regression 1

0.22

0.19

0.02

  

−0.22^

0.008

    CST Injury

   

−0.47

0.02

  

Simple Regression 2

0.20

0.17

0.02

  

−0.24^

0.006

    LM1-RM1 rs-connectivity

   

0.45

0.02

  
  1. R2, adjusted R2, β-values, ΔR2 values, and the associated significance (p-values) for the hierarchical multiple regression models to explain variability in performance on motor assessments. Hash (#) represents the ΔR2 value from the comparison between the interaction model and additive model. Caret (^) represents the ΔR2 value from the comparison between the additive model and simple regression model. Model comparisons are considered significant at p < 0.05.