Table 2 The Classification Performance of Different Classifiers.
From: Computational characterization and identification of human polycystic ovary syndrome genes
Classifier | Precision | Recall | F1 | AUC |
|---|---|---|---|---|
KNN (K = 7) | 0.77 | 0.69 | 0.73 | 0.78 |
Decision tree | 0.76 | 0.74 | 0.75 | 0.79 |
SVM (liner) | 0.81 | 0.71 | 0.75 | 0.80 |
SVM (polynomial d = 3) | 0.49 | 0.73 | 0.58 | 0.57 |
SVM (RBF) | 0.79 | 0.68 | 0.73 | 0.79 |